MADE EASY&NEXT IRS GROUP

PRESENT

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Maximum Marks: 720

Time : 3 Hours

NEET (UG) – 2019

IMPORTANT INSTRUCTIONS

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **P3**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- **12.** Use of Electronic/Manual Calculator is prohibited.
- **13.** The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this Examination.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- **15.** The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Section-I (CHEMISTRY) 1. For the second period elements the correct increasing order of first ionisation enthalpy is: Li < Be < B < C < N < O < F < Ne(1) (2) Li < B < Be < C < O < N < F < NeLi < B < Be < C < N < O < F < NeLi < Be < B < C < O < N < F < Ne (3) (4) 2. The method used to remove temporary hardness of water is: (1) Calgon's method Clark's method (2) Ion-exchange method (4) Synthetic resins method (3) 3. Which of the following is an amphoteric hydroxide? (4) (1) Sr(OH), (2) Ca(OH), (3) Mg(OH), Be(OH), 4. Among the following, the narrow spectrum antibiotic is: (1) penicillin G (2) ampicillin (3) amoxycillin (4)chloramphenicol 5. Which mixture of the solutions will lead to the formation of negatively charged colloidal [AgI]I⁻ sol.? 50 mL of 1 M AgNO₃ + 50 mL of 1.5 M KI (1) 50 mL of 1 M AgNO₃ + 50 mL of 2 M KI (2) 50 mL of 2 M AgNO₃ + 50 mL of 1.5 M KI (3) 50 mL of 0.1 M AgNO₃ + 50 mL of 0.1 M KI (4) 6. Conjugate base for Bronsted acids H₂O and HF are: OH^{-} and $H_{2}F^{+}$, respectively H_3O^+ and F^- , respectively (1) (2) (3) OH⁻ and F⁻, respectively (4) H_3O^+ and H_2F^+ , respectively 7. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is: (1) 10 σ bonds and 3 π bonds (2) 8σ bonds and 5π bonds (3) 11σ bonds and 2π bonds (4) 13 σ bonds and no π bonds 8. The correct structure of tribromooctaoxide is: (1) (2) O = Br - Br - Br - O(3) pH of a saturated solution of $Ca(OH)_2$ is 9. The solubility product (K_{sp}) of $Ca(OH)_2$ is: 9. 0.5×10^{-15} (2) 0.125×10^{-15} 0.25×10^{-10} (4) (1) (3) 0.5×10^{-10} The correct order of the basic strength of methyl substituted amines in aqueous solution is: 10. (1) $(CH_3)_2 NH > CH_3 NH_2 > (CH_3)_3 N$ (2) $(CH_3)_3 N > CH_3 NH_2 > (CH_3)_2 NH$

- (3) $(CH_3)_3 N > (CH_3)_2 NH > CH_3 NH_2$
- (2) $(CH_3)_3 N > CH_3 NH_2 > (CH_3)_2 NH$ (4) $CH_3 NH_2 > (CH_3)_2 NH > (CH_3)_3 N$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

11.	For a	cell invo	lving one	e ele	ctron 1	$\Xi_{\rm cell}^{\ominus} = 0.59 \mathrm{V}$	/ at 298K	, the equili	brium c	onstan	t for the cell reaction is:
	Give	en that $\frac{2}{}$	$\frac{.303RT}{F} =$	0.05	59 V at	T = 298K					
	(1)	1.0×10^{2}	1	(2)	1.0	$\times 10^{5}$	(3)	1.0×10^{10}		(4)	1.0×10^{30}
12.	Amor	ng the fol	lowing, th	ne or	that	is not green	house gas	is:			
	(1)	nitrous o	oxide	(2)	me	thane	(3)	ozone		(4)	Sulphur dioxide
13.	The n	nixture th	at forms r	maxi	mum t	oiling azeo	trope is:				
	(1)	Water +	Nitric aci	id	11.1.1		(2)	Ethanol +	Water		
	(3)	Acetone	+ Carbon	n disi	ulphide		(4)	Heptane +	Octane		
14.	Whiel	n one is n	nalachite	from	the fo	llowing?	(2)	Fa O			$C_{\rm H}CO$ $C_{\rm H}(OH)$
	(1)			(2)		$(OH)_2$	(3)	$\Gamma e_3 O_4$		(4)	$CuCO_3.Cu(OH)_2$
15.	Match	n the follo)wing:								
	(a)	Pure ni	trogen		(i)	Chlorine					
	(b)	Haber	process		(ii)	Sulphuric	acid	<u> </u>			4
	(c)	Contac	t process		(iii)	Ammonia					
	(d)	Deacon	ı's proces	s	(iv)	Sodium az	zide or Ba	rium azide			
	Whicl	h of the f	ollowing i	is the	e corre	ct option?				. >	
	(1) (2) (3)	(a) (i) (ii) (iii) (iii)	(b) (ii) (iv) (iv) (iii)	(c) (iii (i) (ii) (ii)	())	(d) (iv) (iii) (i) (i)			كمر	2,	
16	(4) Whiel	(IV)	(III)	(11)	atabili	(I) try order for	$\mathbf{H} \mathbf{E} (\mathbf{E} -$'s and D	2)9	
10.	(1)			l mai			$H_2 E (E - (2))$	H O < H	сани г с – ц с	о): о < Ч	Te < H Do
	(1) (3)		$_{2}$ $0 < \Pi_{2}$ S		- U S	H O	(2)	$\Pi_2 O < \Pi_2$	$3 < \Pi_2 S$	\mathbf{P}_{2}	
	(3)	п ₂ Р0<	Π ₂ 1e< Π	1 ₂ 3e	< n ₂ 5.	ς Π ₂ Ο	(4)	$\Pi_2 Se < \Pi_2$	1е<п	₂ P0<1	$\Pi_2 0 < \Pi_2 S$
17.	Identi (1) (2) (3) (4)	fy the inc Three ec Two axi Axial P PCl ₅ mo	orrect sta luatorial F al P — Cl — Cl bon olecule is	itemo P — (l bor ids a non-	ent rela Cl bond nds mal re long -reactiv	tted to PCl ₅ Is make an a ke an angle er than equa 7e	from the angle of 1 of 180° w atorial P –	following: 20° with ea ith each oth – Cl bonds	ch other er		
18.	The m	najor prod	luct of the	e fol	lowing	reaction is:					
		\int_{coo}^{coo}	H +NH ₃ - H	stro	ong heating	→ 0					
	(1)		COOH	(2)		O NH O	I (3)		COOH NH ₂	(4)	NH ₂ NH ₂

19. The compound that is most difficult to protonate is:

(1)
$$H \xrightarrow{O} H$$
 (2) $H_3C \xrightarrow{O} H$ (3) $H_3C \xrightarrow{O} CH_3$ (4) $Ph \xrightarrow{O} H$

- 20. The manganate and permanganate ions are tetrahedral due to:
 - (1) The π bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
 - (2) There is no π bonding
 - (3) The π bonding involves overlap of p-orbitals of oxygen with p-orbitals of manganese
 - (4) The π bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese
- 21. The most suitable reagent for the following conversion, is:

H₃C - C = C - CH₃
$$\longrightarrow$$
 H₃C CH₃
H₃C - C = C - CH₃ \longrightarrow H₃C CH₃
H_{cis-2-butene}
(1) Na/liquid NH₃
(2) H₂, Pd/C, quinoline
(3) Zn/HCl (4) Hg²⁺ / H⁺, H₂O

22. The structure of intermediate A in the following reaction, is:

- **23.** If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by:
 - (1) t = 0.693/k (2) t = 6.909/k (3) t = 4.606/k (4) t = 2.303/k
- 24. Which of the following reactions are disproportionation reaction?

(a)
$$2Cu^+ \longrightarrow Cu^{2+} + Cu^0$$

$$2KMnO_4 \xrightarrow{\Lambda} K_2MnO_4 + MnO_2 + O_2 \qquad (d) \qquad 2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^{\oplus}$$

Select the correct option from the following: (1) (2) and (b) and (c) (3) (4) and (c)

2.

- (1) (a) and (b) only (2) (a), (b) and (c)
- **25.** In which case change in entropy is negative?
 - (1) Evaporation of water

(c)

(3) Sublimation of solid to gas

- (b) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$
- (3) (a), (c) and (d) (4) (a) and (d) only
- (2) Expansion of a gas at constant temperature
- $(4) \quad 2H(g) \longrightarrow H_2(g)$

26.	The (1)	biodegradable poly nylon-6 6	mer is: (2)	nvlon 2-nvlon 6	(3)	nvlon-6	(4)	Buna-S	
27.	A ga	is at 350 K and 15	bar has	molar volume 2	0 percei	nt smaller th	an that for a	ideal gas under the same	e
	cond	itions. The correct	option	about the gas and	its com	pressibility f	actor (Z) is:		
	(1)	Z > 1 and attract	ive force	es are dominant	(2)	Z > 1 and z	repulsive for	es are dominant	
	(3)	Z < 1 and attract	ive forc	es are dominant	(4)	Z < 1 and z	repulsive for	es are dominant	
28.	A co	mpound is formed	by catio	on C and anion A	. The an	ions form he	exagonal clos	e packed (hcp) lattice and	l
	the c	c A	a of octa	hedral voids. The C	e tormul	a of the com	pound is:	$C \wedge$	
	(1)	C_2A_3	(2)	C ₃ A ₂	(3)	C ₃ A ₄	(4)	C ₄ A ₃	
29.	Enzy	mes that utilize A	TP in pl	No No	require a	an alkaline e	arth metal (M	l) as the cofactor. M is:	
20	(1)		(2)	IVIg	(3)	Ca	(4) The		
30.	4a, 5	5p, 51 and $6p$ orbita 5f > 6n > 5n > 4c	$\frac{1}{1}$ (2)	ranged in the ord 6n > 5f > 5n > 4	d (3)	6n > 5f > 4	rgy. The corr 1d > 5n (4)	ect option is: 5f > 6n > 4d > 5n	
31	(I) For t	he cell reaction	u (2)	op > 51 > 5p > 4	u (5)	op > 51 > -	та > 5р (ч)	512 op 2 4d 2 5p	
51.	$2F^{3+}$	$(a_1) + 2I^{-}(a_2)$	$\rightarrow 2 \mathrm{Fe}^{2+}$	(aq) + I (aq)					
	ΣI E⊖	(uq) + 21 (uq) = 0.24 V at 208 K	The st	$(uq) + I_2(uq)$	roy (A)	(\mathbf{r}^{Θ}) of the c	all reaction is		
		= 0.24 V at 238 K	. The su	$= 0.6500 \text{ C} \text{ ma}^{-1}$	Δ_r	J) Of the C			
		en that Faraday col 46.22 km^{-1}	nstant F	= 96500 C mol		46 22 kJ m	a^{1-1} (4)	22.16 kJ mol ⁻¹	
22	(1) Ean (- 40. 32 kJ IIIOI	(2)	- 23.10 kJ mol	(3)	40.32 KJ II	101 (4)	~25.10 KJ 1101	
32.	FOF a	A $S=0$ at cons	tant T	and P	(2)	$\Lambda V \neq 0$	at constant T	and P	
	(1)	$\Delta_{\text{mix}} B = 0$ at con	stant T	and P	(2)	$\Delta_{\text{mix}} \mathbf{v} \neq 0$	at constant T	and P	
22	(C)	$\Delta_{\rm mix}$ II = 0 at con					ut constant 1		
33.	(1)	valine	(2)	leucine	(3)	alanine	(4)	lysine	
34	(-) Wha	t is the correct el	(-)	configuration of	the cer	utral atom in	K [Fe(CN)	l based on crystal field	1
54.	theor	rv?	ceronic	configuration of				₆] based on erystar nerd	L
	(1)	$t_{-}^{4} e^{2}$	(2)	$t_{a}^{6} e^{0}$	(3)	$e^{3}t^{3}$	(4)	$e^4 t_a^2$	
	(-)			² g ^g g	(0)	c v ₂	()	• • • • • • • • • • • • • • • • • • • •	
35.	Whi	ch of the following	is inco	rect statement?	(\mathbf{n})	SiCl is a	a ilu hudrolu	and	
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	C_{4} is covarent in C_{2} (X = f C)	Dr. D.	CaV	(2)	$SICI_4$ is earlier in interval.	asily liyaloly	seu	
	(3)	GeX_4 (X – I, CI	, ы, і) і	s GeA ₂	(4)	SHF_4 is ion	nic in nature		
36.	Mate	ch the Xenon comp	ounds i	n Column – I with	1 its stru	cture in Col	umn – II and	assign the correct code:	
	(a)	XeF ₄		(i) Pyrami	dal	L			

(a)	XeF ₄	(1)	Pyramidal
(b)	XeF ₆	(ii)	Square planar
(c)	XeOF ₄	(iii)	Distorted octahedral
(d)	XeO ₃	(iv)	Square pyramidal

Coucs.	Codes:	
--------	--------	--

	(a)	(b)	(c)	(d)
(1)	(i)	(ii)	(iii)	(iv)
(2)	(ii)	(iii)	(iv)	(i)
(3)	(ii)	(iii)	(i)	(iv)
(4)	(iii)	(iv)	(i)	(ii)

37. An alkene "A" on reaction with O_3 and $Zn - H_2O$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is:

(1)
$$CI - CH_2 - CH_3$$

(3) $H_3C - CH_2 - CH_2 - CH_3 - CH_3$
(4) $H_3C - CH_2 - CH_2 - CH_3 - CH$

38. For the chemical reaction $N_2(g) + 3H_2(g) \square 2NH_3(g)$ the correct option is:

(1)
$$-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$$

(2) $-\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$
(3) $-\frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$
(4) $3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$

- 39. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is: [Given that 1 L bar = 100 J]
 (1) 30 J
 (2) 5 kJ
 (3) 25 J
 (4) 30 J
- 40. Among the following, the reaction that proceed through an electrophilic substitution is:

(1)
$$\stackrel{+}{\bigvee} Cl^{-} \underbrace{Cu_2Cl_2}_{Cl_2} \xrightarrow{Cl + N_2}_{Cl + N_2}$$

(2) $\stackrel{+}{\bigvee} + Cl_2 \xrightarrow{AlCl_3}_{Cl_3} \xrightarrow{Cl + HCl}_{Cl + HCl}$
(3) $\stackrel{+}{\bigvee} + Cl_2 \xrightarrow{UV light}_{Cl + Cl} \xrightarrow{Cl}_{Cl} \xrightarrow{Cl}_{Cl}$
(4) $\stackrel{-}{\bigcup} - CH_2OH + HCl \xrightarrow{heat}_{Cl + H2}_{Cl + H2}$

- **41.** Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
 - (1) O_2 (2) N_2 (3) C_2 (4) Be_2

47	Whi	ch of the following	snecie	s is not stable?				
72.	(1)	$[SiF_1]^{2-}$	(2)	$[GeC]_{2}^{2-}$	(3)	$[Sn(OH),]^{2-}$	(4)	[SiCL] ²⁻
43	Whi	ch will make basic h	uffer		(-)	F. (-)01		r 01
101	(1)	50 mL of 0.1 M N	VaOH ·	+ 25 mL of 0.1 M	CH ₃ CO	ЮН		
	(2)	100 mL of 0.1 M	CH ₃ C	OOH+100 mL of	0.1 M I	NaOH		
	(3)	100 mL of 0.1 M	HCl+	200 mL of 0.1 M	NH ₄ O	Н		
	(4)	100 mL of 0.1 M	HCl +	100 mL of 0.1 M	NaOH			
44.	Whi	ch of the following	series	of transitions in the	e specti	rum of hydrogen a	tom fall	s in visible region?
	(1)	Lyman series	(2)	Balmer series	(3)	Paschen series	(4)	Brackett series
45.	The	number of moles o	of hydr	ogen molecule req	uired t	to produce 20 mo	les of a	mmonia through Haber's
	(1)	10	(2)	20	(3)	30	(4)	40
Se	ectio	n - II (BIOLOGY))					
46.	Conv	version of glucose to	o gluce	ose-6-phosphate, th	ne first	irreversible reaction	on of gly	colysis, is catalyzed by:
	(1)	Aldolase	(2)	Hexokinase	(3)	Enolase	(4)	Phosphofructokinase
47.	Wha	t is the site of perce	ption	of photoperiod nec	essary	for induction of fl	owering	in plants?
	(1)	Lateral buds	(2)	Pulvinus	(3)	Shoot apex	(4)	Leaves
48.	Whie (1)	ch of the following: It is Vitamin A en	is true riched	e for Golden rice?	daffod	il (
	(1)	It is pest resistant.	with	a gene from <i>Bacilli</i>	us thur	ingiensis.		
	(3)	It is drought tolera	ant, de	veloped using Agre	obacter	<i>ium</i> vector.		
	(4)	It has yellow grain	ns, bec	cause of a gene intr	oduced	from a primitive	variety	of rice.
49.	Iden	tify the correct pai	r repr	esenting the causat	tive ag	ent of typhoid fe	ver and	the confirmatory test for
	typh	oid.						
	(1)	Plasmodium viva	x/UTI	test	(2) (4)	Streptococcus p	neumon	<i>iae</i> /Widal test
50	(J)	sumonetia typni	h fluid	l secreted by meth	(4) har dur	ing the initial day	$u \neq w u a$	tation is very assential to
50.	impa	art immunity to the i	newbo	rn infants because	it conta	ing the mitial day	s of fac	tation is very essential to
	(1)	Natural killer cell	s		(2)	Monocytes		
	(3)	Macrophages			(4)	Immunoglobuli	n A	
51.	It tal	kes very long time	for pin	neapple plants to p	roduce	flowers. Which	combina	tion of hormones can be
	(1)	Auxin and Ethyle	iuce fl	owering in pineapp	(2)	Gibberellin and	year to r	increase yield?
	(3)	Gibberellin and A	bscisi	c acid	(4)	Cytokinin and A	Abscisic	acid
52.	DNA	A precipitation out o	f a mi	xture of biomolecu	les can	be achieved by tr	eatment	with:
	(1)	Isopropanol			(2)	Chilled ethanol		
	(3)	Methanol at room	tempo	erature	(4)	Chilled chlorofo	orm	

NEET: 2019 | Paper CODE: P3

(1)

(3)

Body temperature

Alkaline pH of gut

53.

(1)	I.H. Morgan	(2)	Gregor J.	Mendel	(3)	Alfred Sturtevant	t (4)	Sutton Boveri
Which	of the following	g is the 1	nost importa	ant cause	e for a	nimals and plants	being	driven to extinction
(1)	Habitat loss and	fragme	ntation		(2)	Drought and floo	ods	
(3)	Economic exploi	itation			(4)	Alien species inv	rasion	
Identif	v the cells whose	e secreti	on protects	the linin	g of g	astro-intestinal tra	ct fron	n various enzymes
(1)	Chief Cells	(2)	Goblet Ce	11s	(3)	Oxvntic Cells	(4)	Duodenal Cells
(-) Motob	the Column Lui	(-)	man II.		(0)			
viaten						н		
(\mathbf{a})	Column I			(i)	Con	imn II alariantian of vont	rialar	
(a)	ORS complex			(i)	Rep	olarisation of vent	ricles	
(0)	T-wave	<u> </u>		(iii)	Core	onary ischemia	licics	
(d)	Reduction in t	the size	of T-wave	(iv)	Den	olarisation of atria		
()				(v)	Rep	olarisation of atria		
(1) (3)	(a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (a)	ion. (c)-(ii), (c)-(v), ((d)-(iii) d)-(iii)		(2) (4)	(a)-(iv), (b)-(i), ((a)-(ii), (b)-(iii),	c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
(1) (3) (3) $Match (a)$	the Correct optin (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (o the following stu- Crypts of Lieb	ion. (c)-(ii), (c)-(v), (ructures perkuhn	(d)-(iii) d)-(iii) with their r	espectiv (i)	(2) (4) e loca Panc	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(ii), (b)-(c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
$ \begin{array}{c} \text{(1)} \\ \text{(3)} \\ \text{(3)} \\ \text{(3)} \\ \text{(a)} \\ \hline \text{(b)} \\ \end{array} $	(a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) (a)-(ii), (b)-(i), (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	ion. (c)-(ii), (c)-(v), (ructures perkuhn psule	(d)-(iii) d)-(iii) with their r	espectiv (i) (ii)	(2) (4) e loca Panc Duo	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
$ \begin{array}{c} \text{(1)} & (\\ \text{(3)} & (\\ \text{(3)} & (\\ \text{(a)} & (\\ \text{(b)} & (\\ \text{(c)} & (\\ \end{array} $	(a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) (a)-(ii), (b)-(i), (c) (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	ion. (c)-(ii), (c)-(v), (ructures perkuhn psule erhans	(d)-(iii) d)-(iii) with their r	espectiv (i) (ii) (iii)	(2) (4) e loca Panc Duo Sma	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(ii), (b)-(c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
(1) (3) (3) (3) (4) (6) (6) (6) (6)	(a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) (a)-(ii), (b)-(i), (c) (c)-(i), (b)-(i), (c) (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	ion. (c)-(ii), (c)-(v), ((ructures perkuhn psule erhans ands	(d)-(iii) d)-(iii) with their r	espectiv (i) (ii) (iii) (iv)	(2) (4) e loca Pano Duo Sma Live	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(ii), (b)-(ii)	c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
(1) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	the Correct opti (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) the following stu Crypts of Lieb Glisson's Cap Islets of Lang Brunner's Gla the correct optio	ion. (c)-(ii), (c)-(v), (ructures perkuhn psule erhans ands on from	(d)-(iii) d)-(iii) with their r	espectiv (i) (ii) (iii) (iv) g:	(2) (4) e loca Panc Duo Sma Live	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(ii), (b)-(iii), (b)-(ii), (b)-(iii), (b)-(iii), (b)-(iii)	c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) \\ \text{(3)} & (3) \\ \text{(3)} & (3) \\ \text{(c)} \\ \text{(c)} \\ \text{(d)} \\ \text{Select} \\ \text{(1)} & (3) \\ \end{array}$	the Correct opti (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) the following str Crypts of Liet Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv),	ion. c)-(ii), (c)-(v), (e ructures oerkuhn ssule erhans on from (c)-(ii), ((c)-(i),	(d)-(iii) d)-(iii) with their r the followin (d)-(iv) (d)-(ii)	espectiv (i) (ii) (iii) (iv) g:	(2) (4) e loca Duo Sma Live (2) (4)	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(ii), (c)-	c)-(ii), (c)-(v)	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & \\ \text{(3)} & \\ \text{(3)} & \\ \text{(a)} & \\ \text{(b)} & \\ \text{(c)} & \\ \text{(d)} & \\ \text{(c)} & \\ \text{(d)} & \\ \text{(c)} & \\ \text{(d)} & \\ \text{(c)} & \\ \text{(c)} & \\ \text{(d)} & \\ \text{(c)} & \\ (c$	the Correct opti (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) the following stu- Crypts of Lieb Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G_0 phase:	ion. (c)-(ii), (c)-(v), (e ructures perkuhn sule erhans unds on from (c)-(ii), (c)-(i),	(d)-(iii) d)-(iii) with their r the followin (d)-(iv) (d)-(ii)	espectiv (i) (ii) (iii) (iv) g:	(2) (4) e loca Duo Sma Live (2) (4)	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(ii), (c)	c)-(ii), (c)-(v) (c)-(i), (c)-(i),	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) & (3) \\ \text{(3)} & (3) & (3) \\ \hline (a) & (3) \\ \hline (c) & (3) & (3) \\ \hline (cells in (1)) & (2) \\ $	the Correct opti (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) the following str Crypts of Liet Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G_0 phase: exit the cell cycle	ion. (c)-(ii), (c)-(v), (or ructures <u>perkuhn</u> <u>ssule</u> erhans nds on from (c)-(ii), ((c)-(i), e	(d)-(iii) d)-(iii) with their r the followin (d)-(iv) (d)-(ii)	espectiv (i) (ii) (iii) (iv) g:	(2) (4) e loca Duo Sma Live (2) (4)	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) \\ \text{(3)} & (3) \\ \hline \text{(a)} \\ \hline \text{(b)} \\ \hline \text{(b)} \\ \hline \text{(c)} \\ \hline \text{(d)} \\ \hline \text{(c)} \\ \hline \ \text{(c)} \\ \hline \text{(c)} \\ \hline \ \ \text{(c)} \\ \hline \ \ \text{(c)} \\ \hline \ \ \ \text{(c)} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	the Correct opti (a)-(iv), (b)-(i), (b)-(i), (c) (a)-(ii), (b)-(i), (c) the following structure Crypts of Liet Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), (c) (a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycle suspend the cell	ton. (c)-(ii), (c)-(v), (r ructures berkuhn sule erhans ands on from (c)-(ii), (c)-(i), e cycle	(d)-(iii) d)-(iii) with their r the followin (d)-(iv) (d)-(ii)	espectiv (i) (ii) (iii) (iv) g:	(2) (4) e loca Duo Sma Live (2) (4) (2) (4)	(a)-(iv), (b)-(i), (a)-(ii), (b)-(ii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le l cycle	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) \\ \text{(3)} & (3) \\ \text{(a)} \\ \text{(b)} \\ \text{(c)} \\ \text{(c)} \\ \text{(d)} \\ \text{Select} \\ \text{(1)} \\ \text{(3)} \\ \text{(3)} \\ \text{The Eat} \\ \end{array}$	the Correct opti (a)-(iv), (b)-(i), (b)-(i), (c) (a)-(ii), (b)-(i), (c) the following structure Glisson's Cap Islets of Lange Brunner's Gla the correct option (a)-(iii), (b)-(i), (c) (a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycle suspend the cell arth Summit held	ion. c)-(ii), (c)-(v), (or ructuress perkuhn sule erhans inds on from (c)-(ii), (c)-(i), e cycle d in Rio	(d)-(iii) d)-(iii) with their r the followin (d)-(iv) (d)-(ii) de Janeiro in	espectiv (i) (ii) (iii) (iv) g: n 1992 v	(2) (4) e loca Duo Sma Live (2) (4) (2) (4) vas ca	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-(c)-	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le l cycle	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) \\ \text{(3)} & (3) \\ \hline \text{(a)} \\ \hline \text{(b)} \\ \hline \text{(b)} \\ \hline \text{(c)} \\ \hline \text{(d)} \\ \hline \text{(c)} \\ \hline \text{(c)} \\ \hline \text{(d)} \\ \hline \text{(c)} \\ \hline \text{(c)} \\ \hline \text{(d)} \\ \hline \text{(c)} \\ \hline \text{(c)} \\ \hline \text{(d)} \\ \hline \text{(c)} \\ \hline \ \ \text{(c)} \\ \hline \ \ \ \text{(c)} \\ \hline \ \ \ \ \(c)} \\ \hline \ \ \(c)} \\ \hline \ \ \$	the Correct opti (a)-(iv), (b)-(i), ((a)-(ii), (b)-(i), (c) the following str Crypts of Liet Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycle suspend the cell arth Summit held to reduce CO ₂ er	ion. (c)-(ii), (c)-(v), (f ructures perkuhn ssule erhans ands on from (c)-(ii), f (c)-(ii), (c)-(i), e cycle l in Rio missions	(d)-(iii) with their r with their r the followin (d)-(iv) (d)-(ii) de Janeiro in s and global	espectiv (i) (ii) (iii) (iv) g: n 1992 v warming	(2) (4) e loca Duo Sma Live (2) (4) (2) (4) vas ca	(a)-(iv), (b)-(i), (c) (a)-(ii), (b)-(iii), (c) tion in organs: creas denum Il intestine or (a)-(ii), (b)-(iv), (c) (a)-(iii), (b)-(ii), (c) enter the cell cyc terminate the cell lled:	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le l cycle	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) & (6) \\ \text{(3)} & (6) \\ \text{(4)} & (6) \\ \text{(5)} & (6) \\ \text{(6)} &$	the Correct opti (a)-(iv), (b)-(i), (c) (a)-(ii), (b)-(i), (c) the following strict Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycl- suspend the cell arth Summit held to reduce CO ₂ er for conservation	ion. c)-(ii), (c)-(v), (e ructures <u>berkuhn</u> <u>sule</u> erhans <u>unds</u> on from (c)-(ii), (c)-(ii), e cycle l in Rio missions of biod	(d)-(iii) with their r with their r the followin (d)-(iv) (d)-(ii) de Janeiro in s and global iversity and	espectiv (i) (ii) (iii) (iv) g: n 1992 v warming sustaina	(2) (4) e loca Duo Sma Live (2) (4) (2) (4) vas ca g ble ut	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(ii), (c)-	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le l cycle efits.	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) & (6) \\ \text{(3)} & (6) \\ \text{(3)} & (6) \\ \text{(4)} & (6) \\ \text{(5)} & (6) \\ \text{(6)} & (6) \\ \text{(6)} & (6) \\ \text{(7)} &$	the Correct opti- (a)-(iv), (b)-(i), (c) (a)-(ii), (b)-(i), (c) the following stri- Crypts of Liek Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycl- suspend the cell arth Summit held to reduce CO ₂ er for conservation to assess threat p	ion. c)-(ii), (c)-(v), (i ructures perkuhn sule erhans ands on from (c)-(ii), ((c)-(i), (c)-(i), e cycle l in Rio nissions of biod posed to	(d)-(iii) d)-(iii) with their r with their r the followin (d)-(iv) (d)-(ii) de Janeiro in and global iversity and native speci	espectiv (i) (ii) (iii) (iv) g: n 1992 v warmin sustaina ies by in	(2) (4) e loca Duo Sma Live (2) (4) (2) (4) vas ca g ble ut vasive	(a)-(iv), (b)-(i), (a)-(ii), (b)-(iii), (b)-(iii), (b)-(iii), (c)-(iii), (c)-(ii), (c	c)-(ii), (c)-(v) (c)-(i), (c)-(i), le cycle effts.	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)
$\begin{array}{c} \text{(1)} & (3) & (6) \\ \text{(3)} & (6) \\ \text{(4)} & (6) \\ \text{(4)} & (6) \\ \text{(4)} & (6) \\ \text{(5)} & (6) \\ \text{(6)} & (6) \\ \text{(7)} &$	the Correct opti- (a)-(iv), (b)-(i), (c) (a)-(ii), (b)-(i), (c) the following stri- Glisson's Cap Islets of Lang Brunner's Gla the correct optio (a)-(iii), (b)-(i), ((a)-(iii), (b)-(iv), n G ₀ phase: exit the cell cycle suspend the cell arth Summit held to reduce CO ₂ er for conservation to assess threat p for immediate stri	ion. (c)-(ii), (c)-(v), (f ructures <u>berkuhn</u> sule erhans ands on from (c)-(ii), (c)-(i), e cycle l in Rio nissions of biod bosed to eps to d	(d)-(iii) with their r with their r the followin (d)-(iv) (d)-(ii) de Janeiro in and global iversity and native speci	espectiv (i) (ii) (iii) (iv) g: n 1992 v warmin sustaina ies by in use of CF	(2) (4) e loca Duo Sma Live (2) (4) (2) (4) vas ca g ble ut vasive Cs that	(a)-(iv), (b)-(i), (a) (a)-(ii), (b)-(iii), (a) (a)-(ii), (b)-(iii), (a) (a)-(iii), (b)-(iv), (a) (a)-(iii), (b)-(iv), (b)-(ii), (b)-(ii	c)-(ii), (c)-(v) (c)-(i), (c)-(i), l cycle efits. the oze	(d)-(v) , (d)-(iv) (d)-(iii) (d)-(iv)

What triggers activation of protoxin to active Bt toxin of Bacillus thuringiensis in boll worm?

(2)

(4)

Moist surface of midgut

Acidic pH stomach

- 62. Which of the statements given below is not true about formation of Annual Rings in trees?
 - (1) Annual ring is a combination of spring wood and autumn wood produced in a year.
 - (2) Differential activity of cambium causes light and dark bands of tissue early and late wood respectively
 - (3) Activity of cambium depends upon variation in climate
 - (4) Annual rings are not prominent in trees of temperate region.
- **63.** Match the following hormones with the respective disease:

(a)	Insulin	(i)	Addison's disease
(b)	Thyroxin	(ii)	Diabetes insipidus
(c)	Corticoids	(iii)	Acromegaly
(d)	Growth Hormone	(iv)	Goitre
		(v)	Diabetes mellitus
Select	the correct option.	·	

(1) (a)-(v), (b)-(i), (c)-(ii), (d)-(iii)

- (3) (a)-(v), (b)-(iv), (c)-(i), (d)-(iii)
- (2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i) (4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- 64. In some plants, the female gamete develops into embryo without fertilization. This phenomenon is known as:
 (1) Autogamy
 (2) Parthenocarpy
 (3) Syngamy
 (4) Parthenogenesis
- **65.** Which of the following ecological pyramids is generally inverted?
 - (1) Pyramid of numbers in grassland (2) Pyramid of energy
 - (1) Pyramid of biomass in a forest
 (2) Pyramid of biomass in a sea
 - Tyrania or biomass in a forest (4) Tyrania or biomass
- **66.** Extrusion of second polar body from egg nucleus occurs:
 - (1) after entry of sperm but before fertilization (2) after fertilization
 - (3) before entry of sperm into ovum (4) simultaneously with first cleavage
- 67. *Pinus* seed cannot germinate and establish without fungal association. This is because:
 - (1) its embryo is immature
 - (2) it has obligate association with mycorrhizae
 - (3) it has very hard seed coat
 - (4) its seeds contain inhibitors that prevent germination
- 68. Which of the following factors is responsible for the formation of concentrated urine?
 - (1) Low levels of antidiuretic hormone
 - (2) Maintaining hyperosmolarity towards inner medullary interstitium in the kidneys.
 - (3) Secretion of erythropoietin by Juxtaglomerular complex
 - (4) Hydrostatic pressure during glomerular filtration
- **69.** In *Antirrhinum* (Snapdragon), a red flower was crossed with a white flower and in F_1 generation, pink flowers were obtained. When pink flowers were selfed, the F_2 generation showed white, red and pink flowers. Choose the **incorrect** statement from the following:
 - (1) This experiment does not follow the Principle of Dominance
 - (2) Pink colour in F_1 is due to incomplete dominance.
 - (3) Ratio of F₂ is $\frac{1}{4}$ (Red): $\frac{2}{4}$ (Pink): $\frac{1}{4}$ (White)
 - (4) Law of Segregation does not apply in this experiment

70.	Which part of the brain is responsible for	thermore	gulati	on?		
	(1) Cerebrum (2) Hypothala	amus	(3)	Corpus callosum	(4)	Medulla oblongata
71.	Which of the following sexually transmitted	ed diseas	es is i	not completely cura	ble?	
	(1) Gonorrhoea (2) Genital w	arts	(3)	Genital herpes	(4)	Chlamydiasis
72.	Respiratory Quotient (RQ) value of tripalr	nitin is:				
	(1) 0.9 (2) 0.7		(3)	0.07	(4)	0.09
73.	Select the correct group of biocontrol age	nts				
	(1) Bacillus thuringiensis, tobacco mos	aic virus	, Aph	ids		
	(2) Trichoderma, Baculovirus, Bacillus	thuringi	iensis			
	(3) Oscillatoria, Rhizobium, Trichoder	ma				
	(4) Nostoc, Azospirillium, Nucleopolyh	edroviru	5			
74.	Which one of the following statements	regarding	g pos	t-fertilization devel	opmer	nt in flowering plants is
	incorrect?					
	(1) Ovary develops into fruit					
	(2) Zygote develops into embryo					
	(3) Central cell develops into endosper	m				
	(4) Ovules develop into embryo sac					
75.	Concanavalin A is:					
	(1) an alkaloid (2) an essenti-	al oil	(3)	a lectin	(4)	a pigment
76.	Match the following organisms with the p	roducts t	hey p	roduce:		7
	(a) Lactobacillus	(i)	Che	ese	•	-
	(b) Saccharomyces cerevisiae	(11)	Citr	l io agid		
	(c) Aspergilius niger (d) Acetobacter aceti	(iii)	Brea	ad		-
		(\mathbf{v})	Ace	tic acid		-
	Select the correct option.					J
	(1) (a)-(ii), (b)-(iv), (c)-(v), (d)-(iii)					
	(2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(v)					
	(3) (a)-(iii), (b)-(iv), (c)-(v), (d)-(i)					
	(4) (a)-(11), (b)-(1), (c)-(111), (d)-(v)					
77.	Consider the following statements:					
	(A) Coenzyme or metal ion that is tight	ly bound	to enz	zyme protein is call	ed pro	sthetic group
	(B) A complete catalytic active enzyme	with its	bound	l prosthetic group is	called	a apoenzyme
	Select the correct option. (1) Both (A) and (B) are true		(2)	(Λ) is true but (B)	ic falc	10
	(3) Both (A) and (B) are false		(2)	(A) is false but (B)) is tru	ie
78	The correct sequence of phases of cell cy	cle is:	(.)	(11) 15 14150 544 (12) 15 110	
70.	(1) $M \rightarrow G_1 \rightarrow G_2 \rightarrow S$	cic 15.	(2)	$G_1 \rightarrow G_2 \rightarrow S \rightarrow N$	1	
	$(3) S \rightarrow G \rightarrow G \rightarrow M$		(-)	$G \rightarrow S \rightarrow G \rightarrow N$	1	
-			(7)	\mathbf{G}_1 , \mathbf{G} , $\mathbf{G}_2 \rightarrow \mathbf{W}$	•	
79.	<i>Thiobacillus</i> is a group of bacteria helpful	in carryi	ng ou	t:	с	
	 Nitrogen fixation Nitrification 		(2) (4)	Donitrification	: nxati	ion
	(3) INTIFICATION		(4)	Demunication		

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

80.	Sele	ct the incorrect statement							
	(1)	Inbreeding increases how	mozygosity						
	(2)	Inbreeding is essential to	o evolve purelines in	n any a	animal				
	(3)) Inbreeding selects harmful recessive genes that reduce fertility and productivity							
	(4)	Inbreeding helps in accu	imulation of superio	or gene	s and elimination	of undesirable genes.			
81.	Whie	ch map unit (Centimorgan) is adopted in the c	onstru	ction of genetic m	naps?			
	(1)	A unit of distance betwee	en two expressed g	enes, r	epresenting 10%	cross over			
	(2)	A unit of distance betwee	en two expressed g	enes, r	epresenting 100%	o cross over			
	(3)	A unit of distance betwe	en genes on chromo	osomes	s, representing 1%	ó cross over.			
	(4)	A unit of distance betwee	een genes on chromo	osomes	s, representing 50	% cross over.			
82.	Whie	ch one of the following is	not a method of <i>in s</i>	situ co	nservation of biod	liversity?			
	(1)	Biosphere Reserve		(2)	Wildlife Sanctua	ary			
	(3)	Botanical Garden		(4)	Sacred Grove				
83.	Place	entation, in which ovules of	develop on the inner	wall o	of the ovary or in	peripheral part, is:			
	(1)	Basal (2)	Axile	(3)	Parietal	(4) Free central			
84.	Due	to increasing air-borne a	allergens and pollu	itants,	many people in	urban areas are suffering from			
	respi	ratory disorder causing w	heezing due to:			, O			
	(1)	benign growth on muco	us lining of nasal ca	vity					
	(2)	inflammation of bronchi	and bronchioles	oftho	alvealar walls				
	(3) (4)	reduction in the secretion	n of surfactants by r	on the a	arveorar warrs.	0,			
95	(+) Whi	ab of the following statem	1101 surfactants $0y_1$	Jicuin					
03.	(1)	Cornea is an external tr	ansparent and protect	ctive n	roteinacious cove	ring of the eve-ball			
	(1) (2)	Cornea consists of dense	e connective tissue of	of elast	tin and can repair	itself			
	(3)	Cornea is convex, transr	arent layer which is	s highl	v vascularised				
	(4)	Cornea consists of dense	e matrix of collagen	and is	the most sensitiv	e portion of the eye			
86.	Purii	nes found both in DNA an	d RNA are:	6.					
	(1)	Adenine and thymine		(2)	Adenine and gua	anine			
	(3)	Guanine and cytosine		(4)	Cytosine and thy	ymine			
87.	Expr	ressed Sequence Tags (ES	Ts) refers to:						
	(1)	Genes expressed as RNA	4	(2)	Polypeptide exp	ression			
	(3)	DNA polymorphism		(4)	Novel DNA seq	uences			
88.	Phlo	em is gymnosperms lacks:							
	(1)	Albuminous cells and si	eve cells	(2)	Sieve tubes only	7			
00	(3)	Companion cells only		(4)	Both sieve tubes	and companion cells			
89.	Wha and i	t is the genetic disorder in is sterile?	which an individua	al has a	an overall masculi	ine development, gynaecomastia,			
	(1)	Turner's syndrome		(2)	Klinefelter's syr	ndrome			
	(3)	Edward syndrome		(4)	Down's syndron	ne			
90.	Gras	s leaves curl inwards duri	ng very dry weather	: Selec	t the most approp	vriate reason from the following:			
	(1)	Closure of stomata		(2)	Flaceldity of bul	linorm cells			

(3) Shrinkage of air spaces in spongy mesophyll (4) Tyloses in vessels

91. Consider following features: Organ system level of organisation Bilateral symmetry (a) (b) True coelomates with segmentation of body (c) Select the correct option of animal groups which possess all the above characteristics Annelida, Arthropoda and Chordata Annelida, Arthropoda and Mollusca (1) (2) (3) Arthropoda, Mollusca and Chordata (4) Annelida, Mollusca and Chordata 92. Under which of the following conditions will there be no change in the reading frame of follwing mRNA? 5' AACAGCGGUGCUAUU 3' Insertion of G at 5th position (1) (2) Deletion of G from 5th position Insertion of A and G at 4th and 5th positions respectively (3)Deletion of GGU from 7th, 8th and 9th positions (4) 93. Select the correct option. 8th, 9th and 10th pairs of ribs articulate directly with the sternum (1) 11th and 12th pairs of ribs are connected to the sternum with the help of hyaline cartilage (2) Each rib is a flat thin bone and all the ribs are connected dorsally to the thoracic vertebrae and ventrally (3) to the sternum There are seven pairs of vertebrosternal, three pairs of vertebrochondral and two pairs of vertebral (4) ribs 94. The shorter and longer arms of a submetacentric chromosome are referred to as: s-arm and 1-arm respectively p-arm and q-arm respectively (1) (2)m-arm and n-arm respectively (3) q-arm and p-arm respectively (4) Xylem translocates: 95. Water and mineral salts only (1) Water only (2) Water, mineral salts and some organic nitrogen only (3) (4) Water, mineral salts, some organic nitrogen and hormones Persistent nucellus in the seed is known as: 96. Chalaza Perisperm Hilum (4) Tegmen (1) (2) (3) 97. Match column -I with Column II **Column I Column H** Symbiotic association of fungi with plant roots Saprophyte (i) (a) Decomposition of dead organic materials (b) Parasite (ii) Lichens (iii) Living on living plants or animals (c) (d) Mycorrhiza (iv) Symbiotic association of algae and fungi (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv) (1) (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv) (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i) (3) 98. Which of the following can be used as a biocontrol agent in the treatment of plant disease? (1) Trichoderma (2) Chlorella (3) Anabaena (4) Lactobacillus 99. What would be the heart rate of a person if the cardiac output is 5L, blood volume in the ventricles at the end of diastole is 100 mL and at the end of ventricular systole is 50 mL? (1) 50 beats per minute (2) 75 beats per minute (3) 100 beats per minute (4) 125 beats per minute

100.	Whic	ch of the following protocols did aim for reduc	ing em	ission of chlorofluorocarbons into the atmosphere?
	(1)	Montreal Protocol	(2)	Kyoto Protocol
	(3)	Gothenburg Protocol	(4)	Geneva Protocol
101.	Poly	blend, a fine powder of recycled modified plas	stic, ha	as proved to be a good material for:
	(1)	making plastic sacks	(2)	use as a fertilizer
	(3)	construction of roads	(4)	making tubes and pipes
102.	Whic	ch of the following contraceptive methods do	involv	e a role of hormone?
	(1)	Lactational amenorrhea, Pills, Emergency co	ontrac	eptives
	(2)	Barrier method, lactational amenorrhea, Pill	S	
	(3)	CuT, Pills, Emergency contraceptives	41 1.	
100	(4) D	Phils, Emergency contraceptives, Barrier me	ethods	
103.	Drug	called 'Heroin' is synthesized by:	(\mathbf{a})	anti-lation of mombine
	(1) (3)	alwoosylation of morphine	(2)	nitration of morphine
104	(J)	be of the following point of goods is mainly re-	(ד)	his for groop house offset?
104.	(1)	Ozone and Ammonia	(2)	Oxygen and Nitrogen
	(3)	Nitrogen and Sulphur dioxide	(4)	Carbon dioxide and Methane
105.	Whic	ch of the following muscular disorders is inhe	rited?	
	(1)	Tetany	(2)	Muscular dystrophy
	(3)	Myasthenia gravis	(4)	Botulism
106.	Whic	ch one of the following equipments is essenti	ally re	equired for growing microbes on a large scale, for
	indus	strial production of enzymes?		
	(1)	BOD incubator (2) Sludge digester	(3)	Industrial oven (4) Bioreactor
107.	The	concept of "Omnia cellula-e cellula" regardin	g cell	division was first proposed by:
	(1)	Rudolf Virchow (2) Theodore Schwan	n (3)	Schleiden (4) Aristotle
108.	What	t is the fate of the male gametes discharged in	the sy	mergid?
	(1)	One fuses with the egg, other(s) degenerate((s) in t	he synergid
	(2)	All ruse with the egg other(s) fuse(s) with	suner	aid nucleus
	(3)	One fuses with the egg and other fuses with	centra	l cell nuclei
109.	How	does steroid hormone influence the cellular a	ctiviti	
1070	(1)	Changing the permeability of the cell memb	rane	
	(2)	Binding to DNA and forming a gene-hormo	ne cor	nplex
	(3)	Activating cyclic AMP located on the cell m	nembra	ane
	(4)	Using aquaporin channels as second messen	iger.	
110.	Whic	ch of the following pair of organelles does not	t conta	in DNA?
	(1)	Mitochondria and Lysosomes		
	(2)	Chloroplast and Vacuoles		
	(3) (4)	Lysosomes and Vacuoles		
	(*)	receiver enverope and wittoenonulla		

(3)

- **111.** A gene locus has two alleles A, a. It the frequency of dominant allele A is 0.4; then what will be the frequency of homozygous dominant, heterozygous and homozygous recessive individuals in the population?
 - (1) 0.36 (AA); 0.48 (Aa); 0.16 (aa)
 - (2) 0.16 (AA); 0.24 (Aa); 0.36 (aa)
 - (**3**) 0.16 (AA); 0.48 (Aa); 0.36 (aa)
 - (4) 0.16 (AA); 0.36 (Aa); 0.48 (aa)
- **112.** Match the following organisms with their respective characteristics:

(a)	Pila	(i)	Flame cells
(b)	Bombyx	(ii)	Comb plates
(c)	Pleurobrachia	(iii)	Radula
(d)	Taenia	(iv)	Malpighian tubules

Select the correct option from the following:

- (1) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv) (2) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
 - (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i) (4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

(3)

- 113. Which of the following is a commercial blood cholesterol lowering agent?
 - (1) Cyclosporin A (2) Statin
- 114. Variations caused by nutation, as proposed by Hugo de Vries, are:
 - random and directional
 small and directional
- (2) random and directionless(4) small and directionless

Streptokinase

(4)

Lipases

- **115.** Select the **incorrect** statement
 - (1) Male fruit fly is heterogametic
 - (2) In male grasshoppers, 50% of sperms have no sex-chromosome
 - (3) In domesticated fowls, sex of progeny depends on the type of sperm rather than egg
 - (4) Human males have one of their sex-chromosome much shorter than the other
- 116. Which of the following immune responses is responsible for rejections of kidney graft?
 - (1) Auto-immune response (2) Humoral immune response
 - (3) Inflammatory immune response (4) Cell-mediated immune response
- **117.** From evolutionary point of view, retention of the female gametophyte with developing young embryo on the parent sporophyte for some time, is first observed in:
 - (1) Liverworts (2) Mosses (3) Pteridophytes (4) Gymnosperms
- 118. Select the correct sequence of organs in the alimentary canal of cockroach starting from mouth:
 - (1) Pharynx \rightarrow Oesophagus \rightarrow Crop \rightarrow Gizzard \rightarrow Ileum Colon \rightarrow Rectum
 - (2) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Crop \rightarrow Ileum \rightarrow Colon \rightarrow Rectum
 - (3) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Ileum \rightarrow Crop \rightarrow Colon \rightarrow Rectum
 - (4) Pharynx \rightarrow Oesophagus \rightarrow Ileum \rightarrow Crop \rightarrow Gizzard \rightarrow Colon \rightarrow Rectum
- 119. Which of the following statements regarding mitochondria is incorrect?
 - (1) Outer membrane is permeable to monomers of carbohydrates, fats and proteins
 - (2) Enzymes of electron transport are embedded in outer membrane
 - (3) Inner membrane is convoluted with infoldings
 - (4) Mitochondrial matrix contains single circular DNA molecule and ribosomes
- 120. Which of the following statements is not correct?

(1) Lysosomes have numerous hydrolytic enzymes (2) The hydrolytic enzymes of lysosomes are active under acidic pH Lysosomes are membrane bound structures (3) Lysosomes are formed by the process of packaging in the endoplasmic reticulum (4) 121. Which of the following features of genetic code does allow bacteria to produce human insulin by recombinant DNA technology? Genetic code is not ambiguous (1) (2) Genetic code is redundant (3) Genetic code is nearly universal (4) Genetic code is specific 122. Tidal Volume and expiratory Reserve Volume of an athlete is 500 mL and 1000 mL respectively. What will be his Expiratory Capacity if the Residual Volume is 1200 mL? 1700 mL 1500 mL 2700 mL (1) (2) (3) 2200 mL (4) 123. Match the following genes of the lac operon with their respective products: i gene (i) β-galactosidase (a) Permease (b) z gene (ii) JNDATIO a gene (iii) Repressor (c) (d) (iv) Transacetylase y gene Select the correct option (1) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv) (2) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv) (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)(4) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) **124.** Use of an artificial kidney during hemodialysis may result in: (a) Nitrogenous waste build-up in the body (b) Non-elimination of excess potassium ions Reduced absorption of calcium ions from gastro-intestinal tract (c) Reduced RBC production (d) Which of the following options is the most appropriate? (1) (a) and (b) are correct (2)(b) and (c) are correct (c) and (d) are correct (4) (a) and (d) are correct (3) 125. Match the hominids with their correct brain size: 900 cc (a) Homo habilis (i) Homo neanderthalensis 1350 cc (b)(ii) (c) Homo erectus (iii) 650-800 cc (d) Homo sapiens (iv) 1400 cc Select the **correct** option (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii) (1) (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv) (3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) (4) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii) 126. Select the hormone-releasing Intra-Uterine Devices. (1) Vaults, LNG-20 (2) Multiload 375, Progestasert (3) (4) Lippes Loop, Multiload 375 Progestasert, LNG-20

- **127.** Select the correct sequence for transport of sperm cells in male reproductive system
 - Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Rete testis \rightarrow Inguinal canal \rightarrow Urethra (1)
 - (2) Seminiferous tubules \rightarrow Rete testis \rightarrow Vasa efferentia \rightarrow Epididymis \rightarrow Vas deferens \rightarrow Ejaculatory duct \rightarrow Urethra \rightarrow Urethral meatus
 - (3) Seminiferous tubules \rightarrow Vasa efferentia \rightarrow Epididymis \rightarrow Inguinal canal \rightarrow Urethra
 - Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Vas deferens \rightarrow Ejaculatory duct \rightarrow Inguinal canal \rightarrow (4) Urethra \rightarrow Urethral meatus
- **128.** What is the direction of movement of sugars in phloem?
 - (1) Non-multidirectional (2) Upward
 - Downward **Bi-directional** (3) (4)
- **129.** Which of the following statements in **incorrect**?
 - Viroids lack a protein coat. (2) Viruses are obligate parasites (1)
 - Infective constituent in viruses in the protein coat (3)
 - (4) Prions consist of abnormally folded proteins
- **130.** The ciliated epithelial cells are required to move particles or mucus in a specific direction. In humans, these cells are mainly present in:

(4)

- Bile duct and Bronchioles (1)
- (3) Eustachian tube and Salivary duct
- 131. Which of the following statements is incorrect?
 - Morels and truffles are edible delicacies (1)
 - (2) Claviceps is a source of many alkaloids and LSD
 - Conidia are produced exogenously and ascospores endogenously (3)
 - Yeasts have filamentous bodies with long thread-like hyphae. (4)
- **132.** Which of these following methods is the most suitable for disposal of nuclear waste?
 - (1) Shoot the waste into space
 - Bury the waste under Antarctic ice-cover (2)
 - (3) Dump the waste within rocks under deep ocean
 - (4) Bury the waste within rocks deep below the Earth's surface
- 133. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement
 - (1) The enzyme cuts DNA molecule at identified position within the DNA
 - The enzyme binds DNA at specific sites and cuts only one of the two strands (2)
 - The enzyme cuts the sugar-phosphate backbone at specific sites on each strand (3)
 - (4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA

134. In a species, the weight of newborn ranges from 2 to 5 kg. 97% of the newborn with an average weight between 3 to 3.3 kg survive whereas 99% of the infants born with 2 to 2.5 kg ot 4.5 to 5 kg die. Which type of selection process is taking place?

- (1) **Directional Selection**
- (2) Stabilizing Selection
- **Disruptive Selection** (4) Cyclical Selection (3)
- **135.** Select the **correctly** written scientific name of Mango which was first described by Carolus Linnaeus:
 - (1) Mangifera indica Car. Linn.
- (2) Mangifera indica Linn
- (3) Mangifera indica
- (4) Mangifera Indica

- - (2) Fallopian tubes and Pancreatic duct Bronchioles and Fallopian tubes

MENIIT

Section - III (PHYSICS)

136. The correct Boolean operation represented by the circuit diagram drawn is:

- 137. A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the centre:
 - (1) increases as r increases for r < R and for r > R
 - (2) zero as r increases for r < R, decreases as r increases for r > R.
 - (3) zero as r increases for r < R, increases as r increases for r > R
 - (4) decreases as r increases for r < R and for r > R
- **138.** At a point A on the earth's surface the angle of dip, $\delta = +25^{\circ}$. At a point B on the earth's surface the angle of dip, $\delta = -25^{\circ}$. We can interpret that:
 - (1) A and B are both located in the northern hemisphere.
 - (2) A is located in the southern hemisphere and B is located in the northern hemisphere.
 - (3) A is located in the northern hemisphere and B is located in the southern hemisphere.
 - (4) A and B are both located in the southern hemisphere.
- 139. In a double slit experiment, when light of wavelength 400 nm was used, the angular width of the first minima formed on a screen placed 1 m away, was found to be 0.2°. What will be the angular width of the first minima, if the entire experimental apparatus is immersed in water?
 - (1) 0.266° (2) 0.15° (3) 0.05° (4) 0.1°
- **140.** Six similar bulbs are connected as shown in the figure with a DC source of emf E, and zero internal resistance. The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be:

141. In which of the following processes, heat is neither absorbed nor released by a system?
(1) isothermal
(2) adiabatic
(3) isobaric
(4) isochoric

142. A cylindrical conductor of radius R is carrying a constant current. The plot of the magnitude of the magnetic field, B with the distance d, from the centre of the conductor, is correctly represented by the figure:

143. In the circuits shown below, the reading of the voltmeters and the ammeters will be:

151. A 800 turn coil of effective area 0.05 m^2 is kept perpendicular to a magnetic field $5 \times 10^{-5} T$. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the emf induced in the coil will be :

(1) 2V (2) 0.2 V (3)
$$2 \times 10^{-3}$$
 V (4) 0.02 V

152. In an experiment, the percentage of error occurred in the measurement of physical quantities A, B,C and D are 1%, 2%, 3% and 4% respectively. Then the maximum percentage of error in the measurement X, where $X = \frac{A^2 B^{1/2}}{X}$ will be:

(1)
$$\left(\frac{3}{13}\right)\%$$
 (2) 16[°]% (3) -10% (4) 10%

- 153. The displacement of a particle executing simple harmonic motion is given by
 - $y = A_0 + A \sin \omega t + B \cos \omega t$ Then the amplitude of its oscillation is given by:

(1)
$$A_0 + \sqrt{A^2 + B^2}$$
 (2) $\sqrt{A^2 + B^2}$ (3) $\sqrt{A_0^2 + (A + B)^2}$ (4) A + B

154. An electron is accelerated through a potential difference of 10, 000 V. Its de Brogile wavelength is, (nearly) : $(m_e = 9 \times 10^{-31} kg)$

(1)
$$12.2 \times 10^{-13} m$$
 (2) $12.2 \times 10^{-12} m$ (3) $12.2 \times 10^{-14} m$ (4) $12.2 nm$

LOM

- 155. A mass *m* is attached to a thin wire and whirled in a vertical circle. The wire is most likely to break when:
 - (1) the mass is at the highest point (2) the wire is horizontal
 - (3) the mass is at the lowest point (4) inclined at an angle of 60° from vertical
- **156.** Two particle A and B are moving in uniform circular motion in concentric circles of Radii r_A and r_B with speed υ_A and υ_B respectively. Their time period of rotation is the same. The ratio of angular speed of A to that of B will be:
 - (1) $r_A : r_B$ (2) $v_A : v_B$ (3) $r_B : r_A$ (4) 1:1

157. A copper rod of 88 cm and an aluminium rod of unknown length have their increase in length independent of increase in temperature. The length of aluminium rod is : $(\alpha_{Cu} = 1.7 \times 10^{-5} K^{-1} \text{ and } \alpha_{Al} = 2.2 \times 10^{-5} K^{-1})$ (1) 6.8 cm (2) 113.9 cm (3) 88 cm (4) 68 cm

- **158.** Ionized hydrogen atoms and a-particles with same momenta enters perpendicular to a constant magnetic field, B. The ratio of their radii of then paths $r_H : r_{\alpha}$ will be:
 - **(1)** 2:1 **(2)** 1:2 **(3)** 4:1 **(4)** 1:4
- **159.** When a block of mass M is suspended by a long wire of length L, the length of the wire becomes (L+ l). The elastic potential energy stored in the extended wire is:

(1) Mgl (2) MgL (3)
$$\frac{1}{2}$$
Mgl (4) $\frac{1}{2}$ MgL

- 160. For a p-type semiconductor, which of the following statements is true?
 - (1) Electrons are the majority carries and trivalent atoms are the dopants
 - (2) Holes are the majority carriers and trivalent atoms are the dopants
 - (3) Holes are the majority carriers and pentavalent atoms are the dopants
 - (4) Electrons are the majority carries and pentavalent atoms are the dopants

161.	The v the ea	work done to raise a arth is:	a mass	m from the surface	e of the	e earth to a height h	, whicl	n is equal to the radius of
	(1)	mgR	(2)	2 mgR	(3)	$\frac{1}{2}mgR$	(4)	$\frac{3}{2}mgR$
162.	162. In total internal reflection when the angle of incidence is equal to the critical angle for the pair of me contact, what will be angle of refraction?							e for the pair of media in
	(1) (4)	180° 90°	(2)	0°	(3)	equal to angle of i	incider	ice
163.	3. Two point charge A and B, having charges +Q and –Q respectively are placed at certain distance apart force acting between them is F. If 25% charge of A is transferred to B, then force between the char becomes:						certain distance apart and rce between the charges	
	(1)	F	(2)	$\frac{9F}{16}$	(3)	$\frac{16F}{9}$	(4)	$\frac{4F}{3}$
164.	α-pa	article consists of:						
	(1) (3)	2 protons and 2 ne 2 electrons and 4 j	eutrons protons	only s only	(2) (4)	2 electrons, 2 prot 2 protons only	tons an	d 2 neutrons
165.	Body head	A of mass 4m mov on and elastic in na	ving wi ture. A	th speed u collides	with a ne fract	nother body B of n tion of energy lost b	nass 2n	n, at rest. The collision is colliding body A is:
	(1)	$\frac{1}{9}$	(2)	$\frac{8}{9}$	(3)	$\frac{4}{9}$	(4)	$\frac{5}{9}$
166.	66. A body weighs 200 N on the surface of the earth. How much will it weigh halfway down to the centre of th earth?							down to the centre of the
	(1)	150 N	(2)	200 N	(3)	250 N	(4)	100 N
167.	 Pick the wrong answer in the context with rainbow. (1) When the light rays undergo two internal reflections in a water drop, a secondary rainbow is formed (2) The order of colours is reversed in the secondary rainbow. (3) An observer can see a rainbow when his front is towards the sun (4) Rainbow is a combined effect of dispersion, refraction and reflection of sunlight 							
168.	A for	$F = 20 + 10y \mathrm{ac}$	ts on a	particle in y-direc	tion w	here F is in newton	and y	in meter. Work done by
	this f (1)	orce to move the pa 30 J	rticle f	from $y = 0$ to $y = 1$ for	m is: (3)	25 J	(4)	20 J
169.	A dis How	c of radius 2 m and much work is need	d mass ed to s	100 kg rolls on a l top it?	horizoi	ntal floor. Its centre	e of ma	ass has speed of 20 cm/s.
	(1)	3 J	(2)	30 kJ	(3)	2 J	(4)	1 J
170.	A sm	all hole of area of c	cross-s	ection 2 mm^2 is pr	esent n	ear the bottom of a	fully	filled open tank of height
	2 m.	Taking $g = 10 \text{ m/s}^2$, the r	ate of flow of wate	r throu	gh the open hole w	ould be	e nearly:
	(1)	$12.6 \times 10^{-6} \text{m}^3/\text{s}$	(2)	$8.9 \times 10^{-6} m^3/s$	(3)	$2.23 \times 10^{-6} m^3/s$	(4)	$6.4 \times 10^{-6} m^3 / s$
171.	When	n an object is shot fr	om the	bottom of a long s	mooth	inclined plane kept	at an a	ingle 60° with horizontal,
	it car	travel a distance x	along	the plane. But wh	en the	inclination is decre	ased to	30° and the same object
	is sho	ot with the same vel	ocity,	it can travel x_2 dist	ance. 7	Then $x_1 : x_2$ will be:		
	(1)	$1:\sqrt{2}$	(2)	$\sqrt{2}$:1	(3)	$1:\sqrt{3}$	(4)	$1:2\sqrt{3}$

172. A parallel plate capacitor of capacitance 20 μ F is being charged by a voltage source whose potential is changing at the rate of 3 V/s. The conduction current through the connecting wires, and the displacement current through the plates of the capacitor, would be, respectively: zero, 60µF 60 µA, 60 µA 60 µA, zero (1) (2) (3) (4) zero, zero **173.** The unit of the thermal conductivity is: $W m^{-1} K^{-1}$ $Jm^{-1}K^{-1}$ WmK^{-1} JmK^{-1} (2) (4) (1) (3) 174. Which of the following acts as a circuit protection device? switch (1) conductor (2) inductor (3) (4) fuse 175. The soap bubble, having radius of 1 mm, is blown from a detergent solution having a surface tension of $2.5 \times 10^{-2} N/m$. The pressure inside the bubble equals at a point Z_0 below the free surface of water in a container. Taking $g = 10 \text{ m/s}^2$, density of water $= 10^3 \text{ kg/m}^3$, the value of Z_0 is: (1) 100 cm (2) 10 cm (3) 1 cm (4) 0.5 cm 176. The total energy of an electron in an atom in an orbit is -3 4eV. Its kinetic and potential energies are, respectively: (1) -3.4 eV, -3.4 eV (2) -3.4 eV, -6.8 eV (3) 3.4 eV, -6.8 eV (4) 3.4 eV, 3.4 eV177. Two similar thin equi-convex lenses, of focal length f each, are kept coaxially in contact with each other such that the focal length of the combination is F_1 . When the space between the two lenses is filled with glycerin (which has the same refractive index(μ =1.5) as that of glass) then the equivalent focal length is F, . The ratio $F_1:F_2$ will be: (3) 2:3 (4) 3:4 1:2(1) 2:1 (2) 178. Two parallel infinite line charges with linear charge densities $+\lambda C/m$ and $-\lambda C/m$ are placed at a distance of 2R in free space. What is the electric field mid-way between the two line charges: (2) $\frac{2\lambda}{\pi\epsilon_0 R}$ N/C (3) $\frac{\lambda}{\pi\epsilon_0 R}$ N/C (4) $\frac{\lambda}{2\pi\epsilon_0 R}$ N/C (1) zero 179. In which of the following devices, the eddy current effect is not used? induction furnace magnetic braking in train (1) (2) electromagnet (4) (3) electric heater 180. A particle moving with velocity \vec{V} is acted by three forces shown by the vector triangle PQR. The velocity of the particle will: P 0k (2) (1) increase decrease (3) (4) change according to the smallest force QR remains constant

ANSWER KEY

CHEM	ISTRY		BIOL	PHYSICS			
Q 1	2	Q 46	2	Q 91	1	Q 136	3
Q 2	2	Q 47	4	Q 92	4	Q 137	2
Q 3	4	Q 48	1	Q 93	4	Q 138	3
Q 4	1	Q 49	4	Q 94	2	Q 139	2
Q 5	1, 2	Q 50	4	Q 95	4	Q 140	2
Q 6	3	Q 51	1	Q 96	2	Q 141	2
Q 7	1	Q 52	2	Q 97	4	Q 142	3
Q 8	1	Q 53	3	Q 98	1	Q 143	3
Q 9	1	Q 54	3	Q 99	3	Q 144	1
Q 10	1	Q 55	1	Q 100	1	Q 145	2
Q 11	3	Q 56	2	Q 101	3	Q 146	4
Q 12	4	Q 57	1	Q 102	1	Q 147	4
Q 13	1	Q 58	3	Q 103	2	Q 148	1
Q 14	4	Q 59	1	Q 104	4	Q 149	3
Q 15	4	Q 60	2	Q 105	2	Q 150	1
Q 16	3	Q 61	4	Q 106	4	Q 151	4
Q 17	4	Q 62	4	Q 107	1	Q 152	2
Q 18	2	Q 63	3	Q 108	4	Q 153	2
Q 19	4	Q 64	4	Q 109	2	Q 154	2
Q 20	1	Q 65	4	Q 110	3	Q 155	3
Q 21	2	Q 66	1	Q 111	3	Q 156	4
Q 22	2	Q 67	2	Q 112	2	Q 157	4
Q 23	3	Q 68	2	Q 113	2	Q 158	1
Q 24	1	Q 69	4	Q 114	2	Q 159	3
Q 25	4	Q 70	2	Q 115	3	Q 160	2
Q 26	2	Q 71	3	Q 116	4	Q 161	3
Q 27	3	Q 72	2	Q 117	3	Q 162	4
Q 28	3	Q 73	2	Q 118	1	Q 163	2
Q 29	2	Q 74	4	Q 119	2	Q 164	1
Q 30	1	Q 75	3	Q 120	4	Q 165	2
Q 31	1	Q 76	2	Q 121	3	Q 166	4
Q 32	3	<mark>Q 77</mark>	2	Q 122	1	Q 167	3
Q 33	3	Q 78	4	Q 123	3	Q 168	3
Q 34	2	Q 79	4	Q 124	3	Q 169	1
Q 35	1	Q 80	3	Q 125	3	Q 170	1
Q 36	2	Q 81	3	Q 126	3	Q 171	3
Q 37	3	Q 82	3	Q 127	2	Q 172	2
Q 38	3	Q 83	3	Q 128	4	Q 173	4
Q 39	1	Q 84	2	Q 129	3	Q 174	4
Q 40	2	Q 85	1	Q 130	4	Q 175	3
Q 41	3	Q 86	2	Q 131	4	Q 176	3
Q 42	4	Q 87	1	Q 132	4	Q 177	2
Q 43	3	Q 88	4	Q 133	2	Q 178	3
Q 44	2	Q 89	2	Q 134	2	Q 179	4
Q 45	3	Q 90	2	Q 135	2	Q 180	3

HINTS AND SOLUTION

Section-I (CHEMISTRY)

1. (2)

 $_4\text{Be}\longrightarrow 1\text{s}^22\text{s}^2$ fully filled

$$_{5}B \longrightarrow 1s^{2}2s^{2}2p^{1}$$

 $_7$ N \longrightarrow 1s² 2s² 2p³ Half filled.

 $_{8}O \longrightarrow 1s^{2}2s^{2}2p^{4}$

'Be' and 'N' have comparatively more stable valence subshell configuration than 'B' and 'O'.

2. (2)

Ca(OH)₂ is used to remove temporary hardness, in Clarke's Method.

 $Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$

 $Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH)_2 + 2H_2O$

3. (4)

Be(OH)₂ Beryllium Hydroxide can react with both strong acids and bases, as shown.

 $Be(OH)_2 + 2HCl \longrightarrow BeCl_2 + 2H_2O$

 $Be(OH)_2 + 2NaOH \longrightarrow Na_2[Be(OH)_4]$

4. (1)

Penicillin G or benzyl penicillin is a narrow spectrum antibiotic to treat different infections.

5. **(1, 2)**

50 mL of 1 M AgNO₃ + 50 mL of 2 M KI

0.05 mol AgNO₃+ 0.10 mol KI

Excess of I⁻ are available. Same way excess KI is also present in Choice (1)

6. (3)

 $H_2O \longrightarrow H^{+1} + OH^{-1}_{Conjugate Base}$ $HF \longrightarrow H^{+1} + F^{-1}_{Conjugate Base}$

7. (1)

H $|\sigma$ H $\overline{\sigma}$ C $\overline{\sigma}$ C $\overline{\overline{\pi}}$ C $\overline{\sigma}$ C $\overline{\overline{\pi}}$ π C $\overline{\sigma}$ H $|\sigma|\sigma|\sigma$ H H H (10 σ and 3π)

8. (1)

 $\mathrm{Br}_{3}\mathrm{O}_{8}$

$$O = Br - Br - Br = O$$

$$\| \quad \| \quad \|$$

$$O = Br - Br - Br - Br = O$$

$$\| \quad \| \quad \|$$

$$O = O$$

(1) pH = 14 - pH = 14 - 9 = 5 \Rightarrow [OH⁻] = 10⁻⁵ mol/l Ca(OH)₂ \Box Ca⁺² + 2OH⁻ $\frac{1}{2} \times 10^{-5}$ K_{sp} = [Ca⁺²][OH⁻]² = $\frac{1}{2} \times 10^{-5} (10^{-5})^2 = 0.5 \times 10^{-15}$

10. (1)

9.

Combined effect of inductive effect, hydrogen bonding and steric hindrance decide the basic strength of methylamines in aqueous state to be $2^{\circ} > 1^{\circ} > 3^{\circ}$.

11. (3)

At equilibrium $E_{cell} = 0$

So,
$$\log k = \frac{n \times E_{cell}^0}{0.059}$$
; $k = \operatorname{antilog}\left[\frac{n \times E_{cell}^0}{0.059}\right]$; $k = \operatorname{antilog}\left[\frac{1 \times 0.59}{0.059}\right]$; $k = \operatorname{antilog}\left[10\right]$;

 $k=\!1.0\!\times\!10^{10}$

12. (4)

 SO_2 is not a green house gas.

13. (1)

Water + Nitric acid

Those solutions which show negative deviation from Raoult's Law can form maximum boiling azeotropes.

14. (4)

Malachite is basic copper carbonate i.e. CuCO₃.Cu(OH)₂

15. (4)

Pure $N_2 \longrightarrow$ Sodium azide or Barium azide by the Brin's method $(Ba(N_3)_2 \longrightarrow Ba + 3N_2)$ $N_2 + 3H_2 \longrightarrow \frac{Fe}{M_0,500^{\circ}C} \rightarrow 2NH_3$ Haber's process

$$H_2SO_4 \longrightarrow contact \ process \ (2SO_2 + O_2 \xrightarrow{V_2O_5}{500^{\circ}C} \rightarrow 2SO_3 \ and \ SO_3 + H_2O \longrightarrow H_2SO_4)$$

Chlorine
$$\longrightarrow$$
 Deacon's Process $\left(2HCl + \frac{1}{2}O_2 \xrightarrow{CuCl_2}{500K} + Cl_2 + H_2O\right)$

16. (3)

Thermal stability decreases down the group due to decreasing bond strength.

17. (4)

 PCl_5 is a reactive molecule as it has a central δ + phosphorous due to e^- withdrawal of five chlorine atoms.

Manganate ion
$$(MnO_4^{2-})_{-1}$$
 $Mn_{O_4^{-1}}$ and Permanganate ion $(MnO_4^{1-})_{-1}$ $Mn_{O_4^{-1}}$ $O_{O_4^{-1}}$

Form $d\pi - p\pi$ bonds.

21. (2)

Partly poisoned Lindlar's catalyst converts Alkyne to cis Alkenes by catalytic hydrogenation.

$$=\frac{2.505}{k}\log\frac{100}{100-99}$$

$$t = \frac{2.303}{k} \log 10^{2}$$

$$t = \frac{4.606}{k}$$
24. (1)
(1) 2Cu¹¹ Oxidation Oxidation

28. (3)

(

A at HCP means the unit cell will have 6 atoms effectively.

C at 75% octahedral void =
$$\frac{75}{100} \times 6 = \frac{9}{2}$$

(C₉A₆)×2=C₉A₁₂=C₃A₄

$$\left(\frac{C_9R_6}{2}\right)^{2} - C_9R_{12} - C_2$$

29. (2)

All enzymes that utilizes ATP in phosphate transfer require Mg as cofactor.

30. (1)

5f > 6p > 5p > 4dAs per(n + l) rule, 5f = n + l = 5 + 3 = 86p = n + l = 6 + 1 = 7

$$Sp = n + l = 5 + 1 = 6$$

$$4d = n + l = 4 + 2 = 6$$
31. (1)

$$\Delta_{1}G^{0} = -nFE_{edl}^{0}$$

$$\Delta_{3}G^{0} = \frac{-2 \times 96500 \times 0.24}{1000} k J mol^{-1} = -46.32 k J mol^{-1}$$
32. (3)
For an ideal solution.

$$\Delta_{mx} V = 0; \ \Delta_{mx} H = 0; \ \Delta_{mx} S > 0; \ \Delta_{mx} G < 0$$
33. (3)
Alanine is the non-essential amino acid out of these.
34. (2)

$$K_{4}[Fe(CN)_{e}] \longrightarrow 4K^{-1} + [Fe(CN)_{e}]^{++} x - 6 = -4$$

$$x = + 2$$

$$x Fe^{2x} \longrightarrow_{10} [Ar]3d^{6} 4s^{0}$$
CN⁻ is a strong field ligand.

$$\therefore t_{2x}^{e} eg^{0}$$
35. (1)
PbF₄ is ionic in nature.
36. (2)
(1) $XeF_{4}: Fe^{-1} = FF$
Square Planar
(2) $XeF_{5}: Fe^{-1} = FF$
Square Planar
(3) $XeOF_{4}: Fe^{-1} = FF$
Square Planar
(4) $XeO_{3}: Fe^{-1} = FF$
Square Pyramidal
(5) $XeO_{4}: Fe^{-1} = FF$
Square Pyramidal

37. (3) 0 $A + O_3 \xrightarrow{Zn-H_2O} CH_3 \xrightarrow{\parallel} CH_3 + CH_3 + CH_3 - CHO$ Alkene A is $CH_3 - C = CH - CH_3$ *.*.. ĊН₃ (A) Cl $CH_3 - C = CH - CH_3 + HCl \longrightarrow CH_3 - CH_2 - CH_3$ ĊH₃ ĊH₃ (A) (B) Markovnikov's Reaction 38. (3) $N_2(g) + 3H_2(g) \square 2NH_3(g)$ Rate of reaction is given below: $-\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$ OUNDATIC 39. (1) W = $-P_{ext}[V_f - V_i] = -2[0.25 - 0.10] = -0.3 L$ bar = $-0.3 \times 100 = -30 J$ 40. (2) $+Cl_2$ $-AlCl_3$ + HCl **Step 1** \longrightarrow Generation of electrophile. $Cl - Cl + AlCl_3 \longrightarrow Cl - Cl - Cl_3 \longrightarrow Cl^{+1} + AlCl_4^{-1}$ Step 2 \longrightarrow Attack of Electrophile H $+ C1^+$ \rightarrow Cleavage of C — H bond. Step 3— C1ClH $+ H^{+1}$ $H^{+} + [AlCl_4]^{-} \longrightarrow HCl + AlCl_3$ 41. (3) $_{6}C \longrightarrow 1s^{2} 2s^{2} 2p^{2}$ $_{6}C \longrightarrow 1s^{2} 2s^{2} 2p^{6}$

$\sigma ls^2 \sigma * ls^2 \sigma 2s^2 \sigma * 2s^2 \pi 2p_x^2 \pi 2p_y^2$

 \therefore There is any overlapping of P_x and P_y .

42. (4)

 $[SiCl_6]^{2-}$ it is highly unstable because 6 larger chloride ions can't accommodate around Si⁴⁺ due to steric constraints.

43. (3)

meq of $NH_4OH = 20$ and meq of HCl = 10. Final solution has 10 meq of NH_4Cl and 10 meq of NH_4OH that makes a basic buffer.

44. (2)

Balmer series of wavelengths fall in visible region of hydrogen spectrum.

45. (3)

 $N_2 + 3H_2 \longrightarrow 2NH_3$

2 mol NH₃ need = 3 mol H₂

20 mol NH₃ will need = 30 mol H₂

Section- II (BIOLOGY)

46. (2)

Glucose + ATP $\xrightarrow{\text{Hexokinase}}_{\text{Mg}^{2+}}$ glucose 6 PO₄ + ADP + Pi (irreversible reactions are catalyzed by

enzymes with suffix Kinase)

47. (4)

Leaves receive light and synthesise a hormonal substance florigen which migrates from leaves to shoot apices to induce flowering only after necessary inductive photoperiod.

48. (1)

Golden rice is enriched with vit A and lysine, a gene taken from daffodil.

49. (4)

Causative agent of typhoid fever is Salmonella typhi. Typhoid fever is confirmed by widal test.

50. (4)

Colostrum, the yellowish fluid secreted by mother during initial days of lactation imparts natural passive immunity to the new born infant as it contains IgA.

51. (1)

In pineapple, flowers are stimulated by spraying auxin and ethylene.

52. (2)

DNA precipitation out of mixture of biomolecules can be achieved by chilled ethanol

53. (3)

Protoxin to Bt. active toxin of Bacillus thuringiensis takes place in alkaline PH of gut

54. (3)

Alfred Sturtevant has worked on gene mapping the distance b/w genes of same chromosome

55. (1)

It is proved by Amazon rain forest where animals and plants were destroyed due to cultivation of soybean and grass land for raising beef cattle.

56. (2)

Goblet cells in the gastro-intestinal tract secrete mucus which covers the mucosal surface and protects it from action of various enzymes.

- 57. (1)
 - (a) P-wave (iv) Depolarisation of atria
 - (b) QRS complex (i) Depolarisation of ventricles
 - (c) T-wave (ii) Repolarisation of ventricles
 - (d) Reduction in the size of T-wave (iii) Coronary ischemia.
- 58. (3)
 - (a) Crypts of Leiberkuhn (iii) Small intestine
 - (b) Glisson's capsule (iv) Liver
 - (c) Islets of Langerhans (i) Pancreas
 - (d) Brunner's glands (ii) Duodenum
- 59. (1)

The cells that do not divide further exit G1 phase to enter an inactive stage called quiescent stage (G0) of the cell cycle.

60. (2)

Earth summit held in Reo de Janeiro in 1992 was called for conservation of biodiversity and sustainable utilization of its benefits.

61. (4)

GLUT – IV is insulin – dependent glucose transporter found primarily in adipose tissues and striated muscles and enables glucose transport into cells.

62. (4)

Annual rings are prominent in trees of temperate region where there is seasonal variation

- **63.** (3)
 - (a) Insulin (v) Diabetes mellitus
 - (b) Thyroxine –(iv) Goitre
 - (c) Corticoids (i) Addison's disease
 - (d) Growth Hormone (iii) Acromegaly
 - Insulin deficiency caused diabetes mellitus.
 - Thyroxin is linked with enlargement of gland known as goiter.
 - Corticoids deficiency cause Addison's disease.
 - Growth hormone hypersecretion cause acromegaly.
- **64.** (4)

The female gamete develops into embryo without fertilization - Parthenogenesis

65. (4)

In sea, biomass of fishes exceeds to that of phytoplanktons

66. (1)

As the sperm enters the secondary oocyte, meiosis II is completed with release of second polar body, the fertilisation occurs.

The entry of sperm into the Ovum induces completion of the meiotic division of the secondary oocyte.

So, extrusion of second polar body from egg nucleus occurs after entry of sperm but before fertilization.

67. (2)

68. (2)

The counter current mechanism between loop of Henle and vasa recta help in maintaining an increasing osmolarity in the inner medullary interstitium which is responsible for the formation of concentrated urine. For formation of concentrated urine the inner medullary interstitium has hypersomolarity i.e., maintained at 1200 mOsmol/L.

69. (4)

segregation takes place during formation of F1 and F2 gametes.

70. (2)

The hypothalamus contains a number of centres which control **body temperature**, urge for eating and drinking.

71. (3)

Genital Herpes is caused by type II Herpes simplex virus

Except for hepatitis-B, genital herpes and HIV infections, other diseases are completely curable if detected early and treated properly.

72. (2)

Tripalmitin is a lipid, R.Q. = 0.7

73. (2)

- 1. Trichoderma a fungi that controls several plant pathogens
- 2. Baculovirus attacks insects and other arthropods, used as narrow spectrum insecticide
- 3. Bacillus thuringiensis controls cotton and corn borer.
- 74. (4)
 - Embryo sac if formed before fertilization
- 75. (3)

Concanavalin A is a lectin extracted for jack bean Canavalia ensiformes

76. (2)

Lactobacillus – Curd Saccharomyces – Bread Aspergillus niger – Citric acid Acetobacter aceti – Acetic aid

77. (2)

With reference to the book Lehninger's Pinciples of Biochemistry, Pg 184, A coenzyme or metal ion that is very tightly or even covalently bound to the enzyme protein is called a prosthetic group. A complete, catalytically active enzyme together with its bound coenzyme and/or metal

ions is called a holoenzyme. The protein part of such an enzyme is called the apoenzyme or apoprotein.

With reference to NCERT, the protein portion of the enzymes is called the apoenzyme. Three kinds of cofactors may be identified: prosthetic groups, co-enzymes and metal ions. Prosthetic groups are organic compounds and are distinguished from other cofactors in that they are tightly bound to the apoenzyme. Co-enzymes are also organic compounds but their association with the apoenzyme is only transient, usually occurring during the course of catalysis.

78. (4)

The correct sequence of phases of cell cycle is $G_1 \rightarrow S \rightarrow G_2 \rightarrow M$

79. (4)

Thiobacillus denitrificans does denitrification, which loses soil fertility.

80. (3)

Inbreeding selects harmful recessive genes that reduce fertility and productivity.

Inbreeding expose harmful recessive genes that are eliminated by selection. It also helps in accumulation of superior genes and elimination of less desirable genes. Close and continued inbreeding usually reduces fertility and even productivity.

81. (3)

Centimorgan is a map unit used to express the distance between two gene loci on a chromosome. 1 cM indicates one percent chance that two genes will be separated by crossing over.

82. (3)

Insitu conservation strategy is conservation of biodiversity in its natural habitat.

Eg: Biosphere reserves, wildlife sanctuary, sacred groves.

Botanical garden is exsitu conservation strategy to conserve plants outside their natural habitat.

83. (3)

Axile placentation – Placenta is axial and the ovules are attached to it in a multilocular ovary.
Parietal placentation – Ovules develop on the inner wall of the ovary or on peripheral part.
Basal placentation – Placenta develops at the base of ovary and a single ovule is attached to it.
Free central placentation – Ovules are borne on central axis and septa are absent.

84. (2)

All these symptoms are matching with the disorder Asthma, which occurs due to inflammation of bronchi and bronchioles.

85. (1)

Cornea is an external, transparent and protective proteinaceous covering of the eye-ball.

86. (2)

Purines – Adenine (A) – Guanine (G) Pyrimidine – Cytosine, Thymine, Uracil (C) (T) (U) DNA \rightarrow AGTC RNA \rightarrow AUGC

So common purines are Adenine, Guanine

87. (1)

ESTs (Expressed sequence tag are short subsequence of a c-DNA. It is used to identify gene transcripts. They are expressed as mRNA for protein synthesis.

```
88. (4)
```

	Angiosperms		
s cells	Sieve tubes, companion cells		
\rightarrow 44A + XXY			
→ Gynaecomastia			
\rightarrow Ma	sculine development		
\rightarrow ste	rile		
$\rightarrow AA$	A + XO		
\rightarrow Fe	nales sterile		
$\rightarrow Ru$	dimentary ovaries		
	$ \Rightarrow \text{ cells} $ $ \Rightarrow 444 $ $ \Rightarrow \text{ Gy} $ $ \Rightarrow \text{ Ma} $ $ \Rightarrow \text{ ster} $ $ \Rightarrow \text{ AA} $ $ \Rightarrow \text{ Fer} $ $ \Rightarrow \text{ Rue} $		

\rightarrow Lack secondary sexual characters.

90. (2)

Bulliform cells are large, bubble shaped epidermal cells that occur in upper surface of monocots (grasses). They help in rolling/curling of leaves to prevent water loss. They become flaccid due to water loss.

91. (1)

92. (4)

```
5' AAC AGC GGU GCU AUU 3'
```

 \downarrow

```
deletion
5' AAC AGC GCU AUU 3'
```

(No change in reading frame of m RNA)

Due to triplet nature of gene expression by codons, addition or deletion of three bases doesnot change the reading frame.

93. (4)

Vertebrosternal ribs are true ribs, dorsally attached to thoracic vertebrae and ventrally to sternum. These are first 7 pairs. There are 3 pairs (8^{th} , 9^{th} and 10^{th} pair) of vertebrochondral ribs which do not articulate directly with sternum but join the 7^{th} ribs with the help of hyaline cartilage. These ribs are known as false ribs.

These are 2 pairs (11th and 12th pair)of Vertebral ribs are not connected ventrally and are known as floating ribs.

94. (2)

The "p" comes from the French "petit" meaning small. Chromosomes have 2 arms - the p (short) arm and the q (long) arm - that are separated from each other only by a primary constriction, the centromere, the point at which the chromosome is attached to the spindle during cell division.

95. (4)

Xylem translocates water, mineral salts, some nitrogen and some hormones.

96. (2)

Persistent nucellus – Perisperm

Chalaza – Represent basal part of ovule

Hilum – In this region, body of the ovule fuses with funicle.

Tegmen – Delicate inner protective layer of a seed.

97. (4)

Mycorrhiza – Symbiotic association of fungi with roots of higher plants. **Parasite** – Organisms that lives on or in a host organism (plants and animals)

Lichens – Mutual symbiotic association of algae and fungi.

Saprophyte - Organism that lives on dead/decaying organic matter

98. (1)

Trichoderma is a free living fungus that is very common in root ecosystem and effective against many plant pathogens.

99. (3)

Cardiac output = stroke volume × heart rate

Stroke volume = blood volume in ventricles at the end of diastole – blood volume in ventricles at the end of systole = 100 - 50 = 50 ml

Therefore, 5000 ml = 50 ml \times heart rate

heartrate = $\frac{5000 \text{ml}}{50 \text{ml}}$ = 100 beats/minute

100. (1) Recognising the deleterious affects of ozone depletion, an international treaty, known as the Montreal Protocol, was signed at Montreal (Canada) in 1987 (effective in 1989) to control the emission of ozone depleting substances i.e. for reducing the emission of CFCs and other ozone depleting chemicals.

101. (3)

Polyblend, a fine powder of recycled modified plastic, which is mixed with the bitumen that is used to lay roads.

102. (1)

In lactational ammenorrhea, due to high prolactin level, gonadotropin level decreases. Oral pills are either progesterone or progesterone – estrogen combination. Emergency contraceptives also include progesterone or progesterone – estrogen combination.

103. (2)

Heroin is synthesized by acetylation of morphine. It is also known as Diacetyl morphine.

104. (4)

CH₄ (Methane), CO₂, N₂O, CFCs - greenhouse gases.

Contribution

• CO ₂	60%
• CH ₄	20%
• CFCs	14%
• N ₂ O	6%

So major greenhouse gases are CO₂ and CH₄.

105. (2)

Muscular dystrophy – Autosomal dominant disorder in which there is progressive degeneration of skeletal muscles.

106. (4)

To produce in large quantities, the development of bioreactors, where large volumes (100-1000 litres) of culture can be processed, was required. Thus, bioreactors can be thought of as vessels in which raw materials are biologically converted into specific products, individual enzymes, etc., using microbial plant, animal or human cells.

107. (1)

Rudolf Virchow (1855) first explained that cells divided and new cells are formed from preexisting cells (*Omnis cellula-e cellula*).

108. (4)

When 2 male gametes enter the female gametophyte (embryo-sac)

One fuses with egg cell to form zygote and other fuses with secondary nucleus to form primay endosperm nucleus.

109. (2)

Steroid hormones directly enter into the cell and bind with intracellular receptors in nucleus to form hormone receptor complex. These hormones can also bind to DNA and form a gene hormone complex.

110. (3)

There are 3 organelles in the cells which contain DNA namely, Mitochondria, Chloroplast and Nucleus.

So, the pair lysosomes and vacuoles both do no contain, DNA.

111. (3)

- (A) Frequency of dominant allele: f(p) = 0.4 (As, p+q=1)
- (a) Frequency of recessive allele: f(q) = 0.6

As, $p^2 + 2pq + q^2 = 1$

AA + 2Aa + aa = 1

Frequency of homozygous dominant individuals (AA) = $0.4 \times 0.4 = 0.16$

Frequency of heterozygous individuals $(2Aa) = 2 \times 0.4 \times 0.6 = 0.48$

Frequency of recessive individuals. (aa) = $0.6 \times 0.6 = 0.36$

112. (2)

- Pila is mollusc having feeding organ known as radula.
- Bombyx is an Arthropod so excretion occurs through Malpighian tubules.
- *Pleurobrachia* is a Ctenophore, so has comb plates.
- *Taenia* is a platyhelminth, so has flame cells for osmoregulation and excretion.

113. (2)

Cyclosporin A – Used as an immunosuppressive agent in organ transplant patients.

Streptokinase - Clot buster for removing clots from blood vessels of patients

Statins are blood cholesterol lowering agents. Statins acts by competitively inhibiting the enzyme responsible for synthesis of cholesterol. It is obtained from a fungus called *Monascus purpureus*.

114. (2)

According to Hugo De Vries, Variations caused by mutations are random and directionless, while Darwinian variations are small and directional.

115. (3)

In domesticated fowls or birds – type of egg determines the sex of the progeny.

116. (4)

Cell mediated immune response is responsible for rejection of kidney graft. As body is able to differentiate between self and non-self and immune response mediated T cell is able to reject the graft.

117. (3)

Retention of female gametophyte with developing young embryo on parent sporophyte for some time is observed in Pteridophytes

118. (1)

The correct sequence of organs in the alimentary canal of cockroach is Pharynx \rightarrow Oesophagus \rightarrow crop \rightarrow Gizzard \rightarrow Ileum \rightarrow Colon \rightarrow Rectum.

119. (2)

Enzymes of electron transport are embedded in inner membrane.

120. (4)

Lysosomes are membrane bound vesicular structures formed by the process of packaging in the Golgi apparatus.

121. (3)

Genetic code is nearly universal that means it is common for all organisms. (except protozoans and mitochondria)

122. (1)

Expiratory capacity = Tidal volume + Expiratory Reserve volume

= 500 mL + 1000 mL = 1500 mL

123. (3)

(a) $i \text{ gene} \rightarrow \text{repressor}$	(b)	$z \text{ gene} \rightarrow \beta \text{ galactosidase}$
---	-----	--

- (c) $a \text{ gene} \rightarrow \text{transacetylase}$ (d) $y \text{ gene} \rightarrow \text{Permease}$
- 124. (3)

During Hemodialysis, nitrogenous wastes (Urea, creatinine) and Potassium ions are eliminated, so (a) and (b) options are incorrect.

Parathyroid hormone stimulates calcitriol production in the kidney by increasing the synthesis of $1-\Box$ hydroxylase. Calcitriol has several important functions in the body. It maintains serum calcium levels by increasing calcium absorption in the gastrointestinal tract. In deficiency of calcitriol, there is reduced absorption of calcium ions from gastrointestinal tract. RBC production is also reduced, due to reduced erythropoetin hormone.

125. (3)

The correct brain size of hominids are:

- (a) Homo habilis \rightarrow 650-800 cc
- (b) Homo neanderthalensis \rightarrow 1400 cc
- (c) Homo erectus \rightarrow 900 cc
- (d) Homo sapiens \rightarrow 1350 cc
- 126. (3)

Progestasert and LNG-20 are hormone releasing IUDs which effect on uterus and cervix.

127. (2)

The correct sequence for transport of sperm cells is \rightarrow seminiferous tubule \rightarrow Rete testis \rightarrow Vasa efferentia \rightarrow Epididymis \rightarrow vas deferens \rightarrow Ejaculatory duct \rightarrow Urethra \rightarrow Urethral meatus.

128. (4)

Translocation of sugar is bidirectional from leaves to root and during spring from root to apical parts

129. (3)

Infective constituent in virus is nucleic acid (DNA or RNA).

130. (4)

In Bronchioles and fallopian tubes there is requirement of moving particles or mucus in a specific direction, so these are lined with ciliated epithelial cells.

131. (4)

Yeasts are unicellular fungi belonging to class Ascomycetes. Shape of yeast in spherical, ellipsoid or globose not filamentous hyphae.

132. (4)

The containers of radioactive wastes or nuclear wastes should be buried within rocks deep 500 m below the earth's surface.

134. (2)

Restriction endonuclease recognises specific sequence and binds to DNA and cuts each of the two strands of the double helix at specific points in their sugar – phosphate backbones.

134. (2)

Stabilising selection is the selection which favors mean/average value. The data show stabilising selection as most of the newborn (97%) have an average weight between 3 to 3.3 kg survive and infants with weights from $2 \rightarrow 2.5$ kg or 4.5 to 5 kg die.

135. (2)

Name of the author appears after specific epithet. In indicates that this species was first described by Linnaeus, full name is not written.

OUNDAT

Section- III (PHYSICS)

137. (2)

For hollow sphere, inside it no charge distribution so electric field inside sphere is zero and outside sphere electric field is given by

$$E = \frac{kQ}{r^2} \Longrightarrow E \propto \frac{1}{r^2}$$

138. (3)

points towar. From sign convention, Positive sign is chosen if magnetic needle points towards surface of earth.

139. (2)

140.

$$\frac{\beta}{D} = \frac{\lambda}{D}$$

$$0.2^{\circ} = \frac{\lambda}{D} \qquad \dots$$
Now immersed in water
$$\lambda' = \frac{\lambda}{\mu}$$

$$= \frac{3}{4}\lambda$$

$$\therefore d = 1m$$

$$= 0.2^{\circ} \times \frac{3}{4}$$

$$= 0.2^{\circ} \times 0.75 = 0.15^{\circ}$$
(2)
$$P_{1} = \frac{E^{2}}{\left(\frac{2R}{3}\right)}$$

$$P_{2} = \frac{E^{2}}{\left(\frac{3}{2}R\right)}$$

$$\frac{P_{1}}{P_{2}} = \frac{\frac{3}{2}}{\frac{2}{3}} = \frac{9}{4}$$

141. (2) For adiabatic process, heat is neither absorbed nor released 142. (3) ↑ B d→ 143. (3) Considering ideal voltmeter and ammeter $\therefore V_1 = V_2$ $i_1 = i_2$ **144.** (1) Factual information 145. (2) PV = nRT $P \propto T$ OUNDATIC and increase in K.E. **146.** (4) $y = r \cos \omega t = 3 \cos \left(\frac{2\pi}{4}\right) t$ $y = 3\cos\left(\frac{\pi}{2}\right)t$ **147.** (4) Average velocity in one complete vibration = $\frac{Net \ displacement}{T = 1} = 0$ Total time **148.** (1) $\omega_i = \frac{6\pi}{60} = \frac{\pi}{10} rad/s$ $\left(\frac{4}{100}\right)$ $i = \frac{mr^2}{2} = 2 \times \frac{mr^2}{2}$ $=16 \times 10^{-4} kg.m^{2}$ And $0 = \omega_i^2 - 2\alpha\theta$ $\alpha = \frac{\omega_i^2}{2\theta} = \frac{\pi^2 / 100}{2.4\pi^2} = \frac{100}{800} rad/s$ $\tau = I\alpha = 16 \times 10^{-4} \times \frac{100}{800}$ $= 2 \times 10^{-6} N.m$

149. (3)

$$\int_{V_{n}}^{\infty} \int_{U_{n}}^{\infty} \int_{U_{n}}^{\infty} \int_{U_{n}}^{\infty} \int_{U_{n}}^{\infty} \int_{U_{n}}^{\infty} \int_{U_{n}}^{0} \int_{U_{n}}^{0}$$

 $\Rightarrow \sqrt{A^2 + B^2 + 2AB\cos\frac{\pi}{2}} \left(\therefore \Delta \phi = \frac{\pi}{2} \right)$ $\Rightarrow \sqrt{A^2 + B^2}$ 154. (2) $\lambda = \frac{\sqrt{150}}{\sqrt{v}}$ $=\frac{12.27}{\sqrt{10000}}=12.2\times10^{-12}\,m$ 155. (3) mu √mġ At lowest point $T_{\max} = \frac{mu^2}{l} + mg$ **156.** (4) $T_{\scriptscriptstyle A}=T_{\scriptscriptstyle B}$ $\therefore \omega_A = \omega_B = 1:1$ 157. (4) Cu rod 88 cm Al Rod *l* $\alpha_1(88) = \alpha_2(l)$ $(1.7 \times 10^{-5})(88) = (2.2 \times 10^{-5})l$ $l = \frac{1.7(88)}{(2.2)} = 68\,cm$ **158.** (1) $r = \frac{mv}{mv}$ qB $r \propto \frac{1}{a}$ $\frac{k}{e}(k \text{ is } \frac{mv}{r})$ $\therefore r_{H} =$ $r_{\infty} = \frac{k}{2e}$ $\therefore \frac{r_H}{r_{\infty}} = \frac{2e}{e} = 2:1$ 159. (3) kl = mg and $U = \frac{1}{2}kx^2$

 $U = \frac{1}{2} \left(\frac{mg}{l} \right) l^2$ $U = \frac{mgl^2}{2l} = \frac{mgl}{2}$ 160. (2) Factual information **161.** (3) $\Delta = \frac{mgh}{1 + \frac{h}{R}} = \frac{mgR}{2} (\because h = R)$ **162.** (4) $\angle i = \angle C$ so $\angle r = 90^{\circ}$ $\frac{-Q}{F = \frac{kQ^2}{d^2}}$ 163. (2) +Q And $\frac{3}{4}Q$ ______ $\frac{-3}{4}Q$ $F' = \frac{k \cdot \left(\frac{9}{16}Q^2\right)}{d^2} = \frac{9}{16}F$ **164.** (1) α particle $\equiv {}_{2}\text{He}^{4}$ No. of protons = 2No. of neutrons = 4 - 2 = 2**165.** (2) 4m $E_i = 1/2(4m)u^2 = 2mu^2$ $p_i = p_f$ $4mu = 4mv_1 + 2mv_2$ $e = \frac{v_2 - v_1}{u_1 - u_2} = 1$ $\Rightarrow v_2 - v_1 = u$ $\Rightarrow v_2 = u + v_1$ $\therefore 4mu = 4mv_1 = 2mu + 2mv_1$ $\Rightarrow 2mu = 6mv_1$ $\Rightarrow v_1 = \frac{1}{3}u$ $\therefore E_f = \frac{1}{2} \times 4m \times \frac{u^2}{9}$ $=\frac{2mu^2}{9}$

 $\therefore \text{ Energy lost} = \frac{E_i - E_f}{E_i} = \frac{2mu^2 - \frac{2}{9}mu^2}{2mu^2}$ $=\frac{8}{9}$ **166.** (4) As we know $g_d = g\left(1 - \frac{d}{R}\right)$ Given: For half depth $d = \frac{R}{2}$ $g_d = g\left(1 - \frac{R}{2R}\right)$ $g_d = \frac{g}{2}$ Weight = mg_d $\Rightarrow \frac{mg}{2}$ FOUNDATIC So final weight at half depth = $\frac{200}{2}$ = 100 N **167.** (3) Rainbow is formed on the opposite side of sun's position **168.** (3) $w = \int F_y dy$ $w = \int_{0}^{1} (20 + 10y) dy$ $w = 20[y]_0^1 + \frac{10}{2}[y^2]_0^1$ $\Rightarrow 20(1-0) + 5(1-0)$ \Rightarrow 20 + 5 = 25 *Joule* **169.** (1) $K_i = \frac{1}{2}mv^2 \left(1 + \frac{K^2}{R^2}\right) = \frac{1}{2}(100)(0.2)^2 \left(1 + \frac{1}{2}\right)$ $K_i = \frac{3}{4}(100) \left(\frac{4}{100}\right) = 3.$ **170.** (1) A Speed of efflux = $v = \sqrt{2gh}$ Volume flow rate $= A \times v$ $= 2 \times (10^{-3})^2 \times \sqrt{2 \times 10 \times 2} = 12.6 \times 10^{-6} m^3 / \text{sec}$

171. (3) $a = g \overline{\sin \theta}$ $0 = u^2 - 2g\sin\theta \times X$ $x = \frac{u^2}{2g\sin\theta}$ $x \propto \frac{1}{\sin \theta}$ $\frac{x_1}{x_1} = \frac{\sin \theta_2}{\sin \theta_2} = \frac{\sin 30^\circ}{\sin 30^\circ}$ $x_2 = \sin \theta_1 = \sin 60^\circ$ $\frac{x_1}{x_2} = \frac{1}{\sqrt{3}}$ **172.** (2) $c = 20 \ \mu F$ dV = 3v/sdt q = CV $\frac{dq}{dt} = C\frac{dv}{dt}$ $=(20\mu F).(3)$ $= 60 \mu A$ $i_C = i_D = 60 \mu A$ **173.** (4) As we know $\frac{dH}{dt} = \frac{KA(T_2 - T_1)}{l}$ $K = \frac{\frac{dH}{dt} \times \Delta l}{A \times \Delta T} \Rightarrow \frac{Watt}{m \times K}$ $m \times K$ $K = watt \ m^{-1}k^{-1}$ **174.** (4) Factual information **175.** (3) r = 1 mm $T = 2.5 \times 10^{-2}$ $Z_0 \rho g = \frac{4T}{r}$ (Bubble is in air) $Z_0 = \frac{4T}{r\rho g} = \frac{4(2.5 \times 10^{-2})}{(10^{-3})(10^3)(10)}$ $Z_0 = \frac{10}{10} \times 10^{-2} = \frac{1}{100} m = 1 \ cm$ **176.** (3) T.E. = U/2 = -K.E. = -3.4K.E. = 3.4 eV and U = -6.8 eV

